Clostridium butyricum (CB) can enhance antioxidant capacity and alleviate oxidative damage, but the molecular mechanism by which this occurs remains unclear. This study used enterotoxigenic Escherichia coli (ETEC) K88 as a pathogenic model, and the p62-Keap1-Nrf2 signaling pathway and intestinal microbiota as the starting point to explore the mechanism through which CB alleviates oxidative damage. After pretreatment with CB for 15 d, mice were challenged with ETEC K88 for 24 h. The results suggest that CB pretreatment can dramatically reduce crypt depth (CD) and significantly increase villus height (VH) and VH/CD in the jejunum of ETEC K88-infected mice and relieve morphological lesions of the liver and jejunum. Additionally, compared with ETEC-infected group, pretreatment with 4.4×106 CFU/mL CB can significantly reduce malondialdehyde (MDA) level and dramatically increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels in the serum. This pretreatment can also greatly increase the mRNA expression levels of tight junction proteins and genes related to the p62-Keap1-Nrf2 signaling pathway in the liver and jejunum in ETEC K88-infected mice. Meanwhile, 16S rDNA amplicon sequencing revealed that Clostridium disporicum was significantly enriched after ETEC K88 challenge relative to the control group, while Lactobacillus was significantly enriched after 4.4×106 CFU/mL CB treatment. Furthermore, 4.4×106 CFU/mL CB pretreatment increased the short-chain fatty acid (SCFA) contents in the cecum of ETEC K88-infected mice. Moreover, we found that Lachnoclostridium, Roseburia, Lactobacillus, Terrisporobacter, Akkermansia, and Bacteroides are closely related to SCFA contents and oxidative indicators. Taken together, 4.4×106 CFU/mL CB pretreatment can alleviate ETEC K88-induced oxidative damage through activating the p62-Keap1-Nrf2 signaling pathway and remodeling the cecal microbiota community in mice.
Baicalin isolated from
Scutellaria baicalensis
possesses antidepressant abilities through its relation to hippocampal neurogenesis. Current research has found that baicalin can promote the proliferation of hippocampal granule cells, however, the detailed mechanism of baicalin on the survival and maturation of hippocampal granule cells has yet to be sufficiently explored. The purpose of this study was to evaluate whether baicalin could facilitate the survival and maturation of hippocampal granule cells, and to explore its potential mechanism. The chronic corticosterone (CORT)-induced mouse model of depression was used to assess antidepressant-like effects of baicalin and to illuminate possible molecular mechanisms by which baicalin affects hippocampal neurogenesis. The survival and maturation of granule cells were measured by immunohistochemistry, immunofluorescence and Golgi staining. The expression of Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β)/β-catenin pathway related proteins were measured by western blot analysis. PI3K inhibitor LY292002 and AKT inhibitor Perifosine were administered to HT-22 cells to explore the relationship between the PI3K/AKT/GSK3β/β-catenin pathway and baicalin. The results of the study illustrated that baicalin significantly decreased chronic CORT-induced depressive-like behaviors and reduced serum corticosterone levels. In addition, baicalin (administered at 60 mg/kg) reversed chronic CORT-induced lesions on hippocampal granule cells. Moreover, baicalin significantly increased the phosphorylation rate of PI3K, AKT, GSK3β, and total β-catenin. The study found that administration of LY292002/Perifosine counteracted the effects of baicalin in HT-22 cells. These results demonstrate that baicalin can alleviate chronic CORT-induced depressive-like behaviors through promoting survival and maturation of adult-born hippocampal granule cells and exhibiting protective effect on hippocampal neuron morphology. We propose the underlying mechanisms involve the activation of the PI3K/AKT/GSK3β/β-catenin pathway.
Background: Whether the probiotic Clostridium butyricum (CB) alleviates enterotoxigenic Escherichia coli (ETEC) K88-induced inflammation by regulating the activation of the toll-like receptor (TLR) signaling pathway is not clear, thus, we carried out this study. A total of 72 piglets (average body weight 7.09 ± 0.2 kg) were randomly divided into three groups of 24 piglets per group. Pigs were either fed a daily diet (NC, negative control), a diet tested every day by 1 × 109 CFU/mL ETEC K88 (PC, positive control), or a basal diet supplemented with 5 × 105 CFU/g CB and challenged with ETEC K88 (PC + CB group).Results: Our results showed that CB pretreatment attenuated the effect of ETEC K88 by decreasing C-reactive protein (CRP), which resulted in tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) production. Histological examination revealed that CB pretreatment alleviated intestinal villi injury caused by ETEC K88 challenge. Furthermore, CB pretreatment promoted mRNA expression of the negative regulators of TLR signaling, including myeloid differentiation factor (MyD88), toll-interacting protein (Tollip), and B cell CLL/lymphoma 3 (Bcl-3), in the intestines of ETEC K88-challenged piglets. ETEC K88-induced activation of nuclear factor kappa B (NF-κB) and nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha (IκBα) was attenuated by CB pretreatment.Conclusion: These findings indicate that CB helps to maintain and strengthen the shape of intestinal villi and limits detrimental inflammatory responses, partly by inhibiting toll-like receptor 2 (TLR-2), toll-like receptor 4 (TLR-4), and toll-like receptor 5 (TLR-5) expression and inhibiting NF-κB p65, and promoting IκBα activation and synergism among its negative regulators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.