In this study, ball mill pretreated iron ore tailings were modified with tetraethoxysilane (TEOS) and hexadecyltrimethoxysilane (HDTMS) to obtain iron ore tailings/polysiloxane (IOT/POS) superhydrophobic powders, which were subsequently mixed with chloroprene rubber solution (CRS) to prepare durable superhydrophobic composite coatings. The effect of HDTMS amount and reaction time on the wettability of the superhydrophobic powder was investigated. The influence of the superhydrophobic powders concentration on the wettability of the composite coatings as well as the degree of damage of the superhydrophobicity of the composite coating was analyzed by using the sandpaper abrasion and tape peeling tests. Further, SEM and FTIR were used to analyze the formation mechanism of the IOT/POS superhydrophobic powders and coatings. The results showed for an HDTMS amount of 2.5 mmol and reaction time of 4 h, the contact angle of the IOT/POS powder was 157.3 ± 0.6°, whereas the slide angle was determined to be 5.9 ± 0.8°. For an IOT/POS powder content of 0.06 g/mL in CRS, the contact angle value of the superhydrophobic composite coating was 159.2 ± 0.5°, whereas the slide angle value was 5.5 ± 0.8°. The superhydrophobic composite coating still maintained the superhydrophobicity after the sandpaper abrasion and tape peeling tests, which indicated the iron ore tailings solid waste has the potential to prepare superhydrophobic coatings.
In order to realize the high value-added resource utilization of solid waste and reduce the cost of rubber manufacturing, iron ore tailings (IOTs) were used as raw material to prepare a reinforcing filler of rubber through ultrafine grinding and surface organic modification techniques. We studied the effects of ball mill grinding conditions on the particle size and distribution of grinded iron ore tailings (G-IOTs). The effects of bis-(triethoxy-silyl-propyl)-tetrasulfide (Si69)-modified G-IOT (Si69-G-IOT) loading levels on the cure characteristics, static mechanical and dynamic mechanical properties of the styrene butadiene rubber (SBR) composites were also explored in this paper. The grinding and modification mechanism of IOTs and the combination of filler and SBR matrix were explored by grinding simulation of population balance model, X-ray diffraction analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The results showed that when grinding IOTs at 2000 r/min for 150 min, the particle size distribution of the resulting G-IOTs was the narrowest, with a D90 value of 4.42 μm. The tensile strength and elongation at break of SBR filled with 120 phr Si69-G-IOT were 14.97 MPa and 596.36%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.