Accurately obtaining road vehicle information is important in intelligent traffic surveillance systems for smart cities. Especially smart vehicle detection is recognized as the critical research issue of intelligent traffic surveillance systems. In this paper, a robust real-time vehicle detection method for the system is proposed. The method combines background subtraction model MOG2(Mixture of Gaussians) with a modified SqueezeNet model (H-SqueezeNet). The MOG2 model is utilized to create scale-insensitive Region of Interest (RoIs) from video frames. H-SqueezeNet is then proposed to accurately identify vehicle category. The effectiveness of the method was verified in CDnet2014 dataset, UA-DETRAC dataset and video data from a traffic intersection in Suzhou, China. The experiment results show that the method can achieves excellent detection accuracy in traffic surveillance systems, and achieve an average detection speed of 39.1 FPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.