We report a redox-neutral P(O)−N coupling reaction of P(O)−H compounds with azides via photoredox and copper catalysis, providing new access to useful phosphinamides, phosphonamides, and phosphoramides. This transformation tolerates a wide range of nucleophilic functionalities including alcohol and amine nucleophiles, which makes up for the deficiency of classical nitrogen nucleophilic substitution reactions. As a demonstration of the broad potential applications of this new methodology, late-stage functionalization of a diverse array of azidobearing natural products and drug molecules, a preliminary asymmetric reaction, and a continuous visible-light photoflow process have been developed.
A boron dipyrromethene (BODIPY)-based metal-organic framework (MOF) nanoemitter was for the first time designed with enhanced electrochemiluminescence (ECL) intensity due to the suppression of non-radiative dissipation originated from the ordered...
Redox processes in groundwater play an important role in bioavailability, toxicity, and mobility of redox-active elements and contaminants. A recent study has demonstrated that low-molecular-weight fraction (LMWF) of humic substances with great number of redox-active functional groups (RAFGs) exhibits great reducing capacity. However, whether LMWF of natural organic matter (NOM) exhibits high redox capacity still remains unclear. Therefore, this study extracted Pahokee peat NOM (PPNOM) and Leonardite NOM (LNOM) from soils, and then LMWFs in these NOMs were collected using a dialysis method. Electron exchange capacities (EEC) and RAFGs of LMWF NOMs at different Eh were analyzed using a novel electrochemical method and a three-dimensional excitation emission fluorescence (3DEEM) spectroscopy. We found that the reducing capacity in LMWF PPNOM was approximately 5-6 times higher than the bulk NOM, while only 7.8% LMWF PPNOM was accounted for in the bulk NOM. An increasing in EEC (EAC + EDC, where EAC is the electron accepting capacity and EDC is the electron donating capacity) of LMWF PPNOM and LNOM with Eh reduced from −0.49 V to −0.69 V. Additionally, an obvious increase in fluorescent intensities of quinone-like fluorophores before and after being reduced LMWF LNOM is responsible for high EAC of LMWF LNOM. These findings provide a better understanding of relationship between RAFGs Eh in LMWF of NOM, further helping in predicting and protection of groundwater environment and fate of transformation and transport for redox-active contaminants in groundwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.