Abstract-Color mapping and semitransparent layering play an important role in many visualization scenarios, such as information visualization and volume rendering. The combination of color and transparency is still dominated by standard alpha-compositing using the Porter-Duff over operator which can result in false colors with deceiving impact on the visualization. Other more advanced methods have also been proposed, but the problem is still far from being solved. Here we present an alternative to these existing methods specifically devised to avoid false colors and preserve visual depth ordering. Our approach is data driven and follows the recently formulated knowledge-assisted visualization (KAV) paradigm. Preference data, that have been gathered in web-based user surveys, are used to train a support-vector machine model for automatically predicting an optimized hue-preserving blending. We have applied the resulting model to both volume rendering and a specific information visualization technique, illustrative parallel coordinate plots. Comparative renderings show a significant improvement over previous approaches in the sense that false colors are completely removed and important properties such as depth ordering and blending vividness are better preserved. Due to the generality of the defined data-driven blending operator, it can be easily integrated also into other visualization frameworks.
Chinese language has evolved a lot during the long time of development. Native speakers now have trouble in reading sentences in ancient Chinese. In this paper, we intend to build an end-to-end neural model to automatically translate between ancient and contemporary Chinese. However, the existing ancientcontemporary Chinese parallel corpora is not aligned at the sentence level, making it difficult to train our model. To build the sentence level parallel training data for our model, we propose an unsupervised algorithm that constructs sentence-aligned ancient-contemporary pairs out of the abundant passage-aligned corpus by using the fact that the aligned sentence pair shares many of the tokens. Based on the aligned corpus, we propose an end-to-end neural model with copy mechanism to translate between ancient and contemporary Chinese. Experiments show that the proposed unsupervised algorithm achieves 99.4% F1 score for sentence alignment, and the translation model achieves 26.95 BLEU from ancient to contemporary, and 36.34 BLEU from contemporary to ancient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.