Salt bridges play an important role in protein stability, protein-protein interactions, and protein folding. The electrostatic solvation free energies of the analogues of charged amino acid side chains were calculated using both explicit solvent free energy perturbation methods and implicit solvation models such as Poisson Boltzmann and surface-generalized Born model. A systematic difference between explicit and implicit solvent results was observed, which we attribute to a specific first-shell solvation effect, which we refer to as bridging waters. We present a method for including a single explicit bridging water between the pairs that improves the implicit solvation models significantly.
Glioblastoma (GBM) is the most frequent and aggressive brain tumor in adults. In spite of advances in diagnosis and therapy, the prognosis of patients with GBM has remained dismal. The fast recurrence and multi-drug resistance are some of the key challenges in combating brain tumors. Glioma stem cells (GSCs) which are considered the source of relapse and chemoresistance, the need for more effective therapeutic options is overwhelming. In our present work, we found that combined treatment with temozolomide (TMZ) and metformin (MET) synergistically inhibited proliferation and induced apoptosis in both glioma cells and GSCs. Combination of TMZ and MET significantly reduced the secondary gliosphere formation and expansion of GSCs. We first demonstrated that MET effectively inhibited the AKT activation induced by TMZ, and a combination of both drugs led to enhanced reduction of mTOR, 4EBP1 and S6K phosphorylation. In addition, the combination of the two drugs was accompanied with a powerful AMP-activated protein kinase (AMPK) activation, while this pathway is not determinant. Xenografts performed in nude mice demonstrate in vivo demonstrated that combined treatment significantly reduced tumor growth rates and prolonged median survival of tumor-bearing mice. In conclusion, TMZ in combination with MET synergistically inhibits the GSCs proliferation through downregulation of AKT-mTOR signaling pathway. The combined treatment of two drugs inhibits GSCs self-renewal capability and partly eliminates GSCs in vitro and in vivo. This combined treatment could be a promising option for patients with advanced GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.