For sounds of a given frequency, spiral ganglion neurons (SGNs) with different thresholds and dynamic ranges collectively encode the wide range of audible sound pressures. Heterogeneity of synapses between inner hair cells (IHCs) and SGNs is an attractive candidate mechanism for generating complementary neural codes covering the entire dynamic range. Here, we quantified active zone (AZ) properties as a function of AZ position within mouse IHCs by combining patch clamp and imaging of presynaptic Ca 2+ influx and by immunohistochemistry. We report substantial AZ heterogeneity whereby the voltage of half-maximal activation of Ca 2+ influx ranged over ∼20 mV. Ca 2+ influx at AZs facing away from the ganglion activated at weaker depolarizations. Estimates of AZ size and Ca 2+ channel number were correlated and larger when AZs faced the ganglion. Disruption of the deafness gene GIPC3 in mice shifted the activation of presynaptic Ca 2+ influx to more hyperpolarized potentials and increased the spontaneous SGN discharge. Moreover, Gipc3 disruption enhanced Ca 2+ influx and exocytosis in IHCs, reversed the spatial gradient of maximal Ca 2+ influx in IHCs, and increased the maximal firing rate of SGNs at sound onset. We propose that IHCs diversify Ca 2+ channel properties among AZs and thereby contribute to decomposing auditory information into complementary representations in SGNs.auditory system | spiral ganglion neuron | dynamic range | synaptic strength | presynaptic heterogeneity T he auditory system enables us to perceive sound pressures that vary over six orders of magnitude. This is achieved by active amplification of cochlear vibrations at low sound pressures and compression at high sound pressures. The receptor potential of inner hair cells (IHCs) represents the full range (1), whereas each postsynaptic type I spiral ganglion neuron (hereafter termed SGN) encodes only a fraction (2-6). SGNs with comparable frequency tuning but different spontaneous spike rates and sound responses are thought to emanate from neighboring, if not the same, IHC at a given tonotopic position of the organ of Corti (2,5,7,8). Even in silence, IHC active zones (AZs) release glutamate at varying rates, evoking "spontaneous" spiking in SGNs. SGNs with greater spontaneous spike rates respond to softer sounds (highspontaneous rate, low-threshold SGNs), than those with lower spontaneous spike rates (low-spontaneous rate, high-threshold SGNs) (2, 9). This diversity likely underlies the representation of sounds across all audible sound pressure levels in the auditory nerve, to which neural adaptation also contributes (10).How SGN diversity arises is poorly understood. Candidate mechanisms include the heterogeneity of ribbon synapses that differ in pre-and/or postsynaptic properties even within individual IHCs (7,(11)(12)(13)(14). IHC AZs vary in the number (11, 15) and voltage dependence of gating (11) of their Ca 2+ channels regardless of tonotopic position (16). Lateral olivocochlear efferent projections to the SGNs regulate postsynaptic exc...
Auditory prostheses can partially restore speech comprehension when hearing fails. Sound coding with current prostheses is based on electrical stimulation of auditory neurons and has limited frequency resolution due to broad current spread within the cochlea. In contrast, optical stimulation can be spatially confined, which may improve frequency resolution. Here, we used animal models to characterize optogenetic stimulation, which is the optical stimulation of neurons genetically engineered to express the light-gated ion channel channelrhodopsin-2 (ChR2).
Active zones (AZs) of inner hair cells (IHCs) indefatigably release hundreds of vesicles per second, requiring each release site to reload vesicles at tens per second. Here, we report that the endocytic adaptor protein 2l (AP-2l) is required for release site replenishment and hearing. We show that hair cell-specific disruption of AP-2l slows IHC exocytosis immediately after fusion of the readily releasable pool of vesicles, despite normal abundance of membrane-proximal vesicles and intact endocytic membrane retrieval. Sound-driven postsynaptic spiking was reduced in a use-dependent manner, and the altered interspike interval statistics suggested a slowed reloading of release sites. Sustained strong stimulation led to accumulation of endosomelike vacuoles, fewer clathrin-coated endocytic intermediates, and vesicle depletion of the membrane-distal synaptic ribbon in AP-2l-deficient IHCs, indicating a further role of AP-2l in clathrin-dependent vesicle reformation on a timescale of many seconds. Finally, we show that AP-2 sorts its IHC-cargo otoferlin. We propose that binding of AP-2 to otoferlin facilitates replenishment of release sites, for example, via speeding AZ clearance of exocytosed material, in addition to a role of AP-2 in synaptic vesicle reformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.