The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth. The TAA1-regulated local auxin biosynthesis in the root-apex TZ in response to Al stress is dependent on ethylene, as revealed by manipulating ethylene homeostasis via the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid, the inhibitor of ethylene biosynthesis aminoethoxyvinylglycine, or mutant analysis. In response to Al stress, ethylene signaling locally upregulates TAA1 expression and thus auxin responses in the TZ and results in auxin-regulated root growth inhibition through a number of auxin response factors (ARFs). In particular, ARF10 and ARF16 are important in the regulation of cell wall modification-related genes. Our study suggests a mechanism underlying how environmental cues affect root growth plasticity through influencing local auxin biosynthesis and signaling.
Aluminum (Al) toxicity is a major factor limiting crop production on acid soils, which represent over 30% of the world’s arable land. Some plants have evolved mechanisms to detoxify Al. Arabidopsis, for example, secretes malate via the AtALMT1 transporter to chelate and detoxify Al. The C2H2-type transcription factor STOP1 plays a crucial role in Al resistance by inducing the expression of a set of genes, including AtALMT1. Here, we identify and characterize an F-box protein-encoding gene regulation of Atalmt1 expression 1 (RAE1) that regulates the level of STOP1. Mutation and overexpression of RAE1 increases or decreases the expression of AtALMT1 and other STOP1-regulated genes, respectively. RAE1 interacts with and promotes the degradation of STOP1 via the ubiquitin-26S proteasome pathway, while Al stress promotes the accumulation of STOP1. We find that STOP1 up-regulates RAE1 expression by directly binding to the RAE1 promoter, thus forming a negative feedback loop between STOP1 and RAE1. Our results demonstrate that RAE1 influences Al resistance through the ubiquitination and degradation of STOP1.
Background Aluminium (Al) toxicity and drought stress are two major constraints for crop production in the world, particularly in the tropics. The variation in rainfall distribution and longer dry spells in much of the tropics during the main growing period of crops are becoming increasingly important yield-limiting factors with the global climate change. As a result, crop genotypes that are tolerant of both drought and Al toxicity need to be developed. Scope The present review mainly focuses on the interaction of Al and drought on root development, crop growth and yield on acid soils. It summarizes evidence from our own studies and other published/related work, and provides novel insights into the breeding for the adaptation to these combined abiotic stresses. The primary symptom of Al phytotoxicity is the inhibition of root growth. The impeded root system will restrict the roots for exploring the acid subsoil to absorb water and nutrients which is particularly important under condition of low soil moisture in the surface soil under drought. Whereas drought primarily affects shoot growth, effects of phytotoxic Al on shoot growth are mostly secondary effects that are induced by Al affecting root growth and function, while under drought stress root growth may even be promoted. Much progress has recently been made in the understanding of the physiology and molecular biology of the interaction between Al toxicity and drought stress in common bean (Phaseolus vulgaris L.) in hydroponics and in an Al-toxic soil. Conclusions Crops growing on acid soils yield less than their potential because of the poorly developed root system that limits nutrient and water uptake. Breeding for drought resistance must be combined with Al resistance, to assure that drought resistance is expressed adequately in crops grown on soils with acid Al-toxic subsoils.
The expression of a citrate transporter MATE gene is crucial for citrate exudation in common bean. However, although the expression of the citrate transporter is a prerequisite for citrate exudation, genotypic Al resistance in common bean particularly depends on the capacity to sustain the synthesis of citrate for maintaining the cytosolic citrate pool that enables exudation.
Auxin acts synergistically with cytokinin to control the shoot stem-cell niche, while both hormones act antagonistically to maintain the root meristem. In aluminum (Al) stress-induced root growth inhibition, auxin plays an important role. However, the role of cytokinin in this process is not well understood. In this study, we show that cytokinin enhances root growth inhibition under stress by mediating Al-induced auxin signaling. Al stress triggers a local cytokinin response in the root-apex transition zone (TZ) that depends on IPTs, which encode adenosine phosphate isopentenyltransferases and regulate cytokinin biosynthesis. IPTs are up-regulated specifically in the root-apex TZ in response to Al stress and promote local cytokinin biosynthesis and inhibition of root growth. The process of root growth inhibition is also controlled by ethylene signaling which acts upstream of auxin. In summary, different from the situation in the root meristem, auxin acts with cytokinin in a synergistic way to mediate aluminum-induced root growth inhibition in .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.