This paper deals with the energy decay estimates and infinite blow‐up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source term under null Dirichlet boundary condition. By constructing a new family of potential wells, together with logarithmic Sobolev inequality and perturbation energy technique, we establish sufficient conditions to guarantee the solution exists globally or occurs infinite blow‐up and derive the polynomial or exponential energy decay estimates under some appropriate conditions.
In this paper, we introduce a new class of (p, h)-convex functions which generalize P-functions and convex, h, p, s-convex, Godunova-Levin functions, and we give some properties of the functions. Moreover, we establish the corresponding Schur, Jensen, and Hadamard types of inequalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.