Heavy metal contamination not only causes threat to human health but also raises sustainable development concerns. The use of traditional methods to remediate heavy metal contamination is however time-consuming, and the remediation efficiency may not meet the requirements as expected. The present study conducted a series of test tube experiments to investigate the effect of calcium source on the lead and copper removals. In addition to the test tube experiments, numerical simulations were performed using Visual MINTEQ software package considering different degrees of urea hydrolysis derived from the experiments. The remediation efficiency degrades when NH4+ and OH− concentrations are not sufficient to precipitate the majority of Pb2+ and Cu2+. It also degrades when CaO turns pH into highly alkaline conditions. The numerical simulations do not take the dissolution of precipitation into account and therefore overestimate the remediation efficiency when subjected to lower Pb(NO3)2 or Cu(NO3)2 concentrations. The findings highlight the potential of applying the enzyme-induced carbonate precipitation to lead and copper remediations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.