In the presence of phospholipid vesicles and calcium ions, protein Z (PZ) serves as a cofactor for the inhibition of coagulation factor Xa by a plasma protein called PZ-dependent protease inhibitor (ZPI). To further characterize ZPI, its cDNA has been isolated and cloned from a human liver cDNA library. The ZPI cDNA is 2.44 kb in length and has a relatively long 5' region (466 nt) that contains six potential ATG translation start codons. ATG's 1-4 are followed by short open reading frames, whereas ATG(5) and ATG(6) are in an uninterrupted open reading frame that includes the encoded ZPI protein. In vitro experiments show that ATG(6) is sufficient for the expression of rZPI in cultured Chinese hamster ovary cells. Northern analysis suggests the liver is a major site of ZPI synthesis. The predicted 423 residue amino acid sequence of the mature ZPI protein is 25-35% homologous with members of the serpin superfamily of protease inhibitors and is 78% identical to the amino acid sequence predicted by a previously described cDNA isolated from rat liver, regeneration-associated serpin protein-1 (rasp-1). Thus, ZPI is likely the human homologue of rat rasp-1. Alignment of the amino acid sequence of ZPI with those of other serpins predicts that Y387 is the P(1) residue at the reactive center of the ZPI molecule. Consistent with this notion, rZPI(Y387A), an altered form of ZPI in which tyrosine 387 has been changed to alanine, lacks PZ-dependent factor Xa inhibitory activity.
Protein Z (PZ) is a vitamin K-dependent plasma protein whose function has been uncertain. The structure of PZ is very similar to that of the coagulation-related factors VII, IX, and X and PC, but PZ differs from these other proteins in that it is not the zymogen of a serine protease. We have shown recently that PZ forms a calcium ion-dependent complex with activated factor X at phospholipid surfaces and that this interaction leads to the inhibition of activated factor X activity through, in part, the action of a previously unidentified plasma protein named PZ-dependent protease inhibitor. Herein, we report that the presence of PZ dampens the coagulation response in human plasma and that concomitant PZ deficiency dramatically increases the severity of the prothrombotic phenotype of factor VLeiden mice. The results indicate that PZ plays a physiologically important role in the regulation of coagulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.