Conspectus In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed. This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut–Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed. In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon–carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.
We study form factors in N =4 SYM at strong coupling in general kinematics and with multi-operator insertions by using gauge/string duality and integrability techniques. This generalizes the AdS 3 results of Maldacena and Zhiboedov in two non-trivial aspects. The first generalization to AdS 5 space was motivated by its potential connection to strong coupling Higgs-to-three-gluons amplitudes in QCD which was observed recently at weak coupling. The second generalization to multi-operator insertions was motivated as a step towards applying on-shell techniques to compute correlation functions at strong coupling. In this picture, each operator is associated to a monodromy condition on the cusp solutions. We construct Y-systems for both cases. The Y -functions are related to the spacetime (cross) ratios. Their WKB approximations based on a rational function P (z) are also studied. We focus on the short operators, while the prescription is hopefully also applicable for more general operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.