The microstructure development in the Delta Process (DP) forging of Superalloy IN718 turbine discs were predicted using the combined approach of axisymmetric finite element simulation and modeling for the dynamic recrystallization and grain growth. In order to establish the deformation constitutive equation and dynamic recrystallization models for the DP process of Superalloy IN718, the isothermal compression tests were carried out in the temperature range 950 to 1010 o C and strain rates range 0.001 to0.1s -1 . Moreover, the isothermal heat treatment tests after hot deformation were conducted in the temperature range 950 to 1040 o C to generate the grain growth model. The experimental results indicated the existence of the į phase could make the activation energy of deformation increase. Furthermore, the existence of the į phase could stimulate the occurrence of dynamic recrystallization, and the grain growth was restrained due to the pinning effect of į phase. The predicted grain size and its distribution in the DP forging of Superalloy IN718 turbine discs were compared with the actual microstructures deformed by the hot die forging. It was found that the forging with uniform fine grains could be obtained by the application of DP process to the forging of the turbine disk, in which the alloy was pre-precipitated į phase after the baiting in the original process.
The effect of ageing processes on the toughness and the yield strength of the Li-containing Al-Zn-Mg-Cu alloys (Al-5.6%Zn-1.9%Mg-1.6%Cu-1.1%Li-0.24Cr) was investigated. The microstructure was observed by transmission electron microscopy, tensile test was performed at a rate of 1mm·s-1, fracture toughness was experimentally determined by the impact test, and the fracture modes had been assessed by image analysis of scanning electron microscopy micrographs. The strength of the Li-containing Al-Zn-Mg-Cu alloys treated at 120 °C is not more than 430MPa, which is very lower than that of 7075 alloys. The strength is comparable to that of 7075–T6 alloys after double-ageing or multi-ageing, however its ductility is lower than that of 7075-T6 alloys. The single-aged Li-containing alloys have high toughness. The multi-aged alloys become brittle. The fracture surface for the Li-containing Al-Zn-Mg-Cu alloys is intergranular, since the intergranular precipitation weakness the grain boundaries.
1.1%Li was added to 7075 alloys to obtain the Li-containing Al-Zn-Mg-Cu alloys. The microstructure and hardness of the alloys are investigated by transmission electron microscopy (TEM) and Vickers hardness. The hardness of the single-aged alloys is low. When the alloys were double-aged or multi-aged, the hardness is comparable to that of Al-Zn-Mg-Cu alloys at peak ageing. Two peaks were present in the hardness curves of the multi-aged Li-containing Al-Zn-Mg-Cu alloys. With the last-step temperature increases, two-peak phenomenon becomes prominent. The density and size of precipitates are influenced remarkedly by the ageing processes. Coarse grain boundary precipitates and PFZ (precipitate free zone)can be observed when the Li-containing Al-Zn-Mg-Cu alloys were multi-aged, and the higher the last-step ageing temperature, the wider the PFZ is.
The correlation of age hardening behavior and Si precipitation in α(Al) of Al-8wt%Si-0.35wt%Mg alloy has been investigated by micro hardness measurement, electron probe microanalysis (EPMA) and transmission electron microscopy (TEM) analysis. The EPMA results show that Si concentration in the center of α (Al) dendrites is higher than that in the edge and the main concentration is about 1.5wt% for Al-8wt%Si-0.35wt%Mg alloy in as cast condition. After solution treatment at 530 °C for 8 h followed by water quenching (T4 treatment), hardness value decreases 9 HV, which is accompanied by the decrease of Si concentration in α (Al). Aging the as-cast sample and T4 treatment sample at 150 °C for 20 h, the main concentration of Mg and Si in α (Al) changes little. Hardness value after as-cast aging is only 3 HV lower than that after T6 treatment. Nanometer Si particles and β″ and/or β′ phases are found in aged samples. The higher hardness value for as-cast aging samples should contribute to the nanometer Si particles in α (Al).
The green sand containing hot-box resin sand was reclaimed by the process of calcination followed by mechanical reclamation. The reclaimed sands were reused in the hot-box process. The grain size distribution, the shape factor, the clay content and the acid demand value were determined. The results show that the acid demand value of the reclaimed sand is higher than that of the base sand. Compared with the base sand, the grain size of the reclaimed sand is almost no difference. It can also be observed that the tensile strength of the molding sand is influenced by the acid demand value and clay content, but the reclaimed sand can still meet the casting process needs. In addition, the reclaimed green sand is satisfactory for hot-box process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.