Nanostructured superhydrophobic surfaces have been actively explored to promote favorable droplet dynamics for a wide range of technological applications. However, the tendency of condensed droplets to form as pinned states greatly limits their applicability in enhancing condensation heat transfer efficiency. Despite recent progresses, the understanding of physical mechanisms governing the wetting transition of condensed droplets is still lacking. In this work, a nanostructured superhydrophobic surface with tapered nanogaps is fabricated to demonstrate the coordination of surface wetting property, topography, and the condensing condition on the wetting state and dynamic behavior of condensed droplets. Combining the environmental scanning electron microscopy and optical visualization methods, we systematically show the morphology of nucleated droplets in nanostructures and the droplet dynamic evolution throughout the growth stages, which provides the direct evidence of condensing condition-induced droplet wetting transition. When the surface subcooling is smaller than 0.3 K, the droplets formed as the Cassie-Baxter state, followed by coalescence-induced droplet jumping. With the increase of surface subcooling up to 0.6 K, however, droplet formation occurs randomly inside nanogaps, resulting in the loss of superhydrophobicity. These new observations along with the new insights about the coordination of surface properties and condensing conditions on droplet wetting transition are useful for guiding the development of novel surfaces for improving droplet removal and phase-change heat transfer.
Droplet jumping from condensing surfaces induced by droplet coalescence during dropwise condensation of mixed steam on a superhydrophobic surface can significantly enhance condensation heat transfer of mixed steam with non-condensable gas. This phenomenon was visually observed and theoretically analyzed in the present paper. The dynamic evolution of droplet and the velocity distribution inside the droplet during coalescence were simulated using multiphase lattice Boltzmann method. The energy distribution released by droplet coalescence was calculated statistically, and the jumping height induced by droplet coalescence on a superhydrophobic surface was predicted based on the energy conservation method. The theoretical predictions obtained by the modified model proposed in this paper agree well with the experimental observations.
We have fabricated a series of textured silicon surfaces decorated by square arrays of pillars whose radius and pitch can be adjusted independently. These surfaces possessed a hydrophobic/superhydrophobic property after silanization. The dynamic behavior of water droplets impacting these structured surfaces was examined using a high-speed camera. Experimental results validated that the remaining liquid film on the pillars' tops gave rise to a wet surface instead of a dry surface as the water droplet began to recede away from the textured surfaces. Also, experimental results demonstrated that the difference in the contact time was subjected to the solid fraction referred to as the ratio of the actual area contacting with the liquid to its projected area on the textured surface. Because the mechanism by which the residual liquid film emerges on the pillars' tops can essentially be ascribed to the pinch-off of the liquid threads, we further addressed the changes in the contact time in terms of the characteristic time of pinch-off of an imaginary liquid cylinder whose radius is related to the solid fraction and the maximum contact area. The match of the theoretical analysis and the experimental results substantiates the assumption aforementioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.