A simple memristor-based chaotic circuit with an active flux-controlled memristor characterized by a smooth continuous cubic nonlinearity is designed. The proposed chaotic circuit can generate a 2-scroll chaotic attractor on a finite time scale and has an equilibrium set with its stability dependent on the initial state of the memristor. The complex dynamics of the proposed chaotic circuit under different initial state of the memristor are investigated both theoretically and numerically. In particular, some novel transient transition behaviors with different time scales are found in the memristor circuit. Experimental observations based on a universal circuit implementation platform are conducted to partially verify the numerical simulation results.
The biomimetic GelMA scaffolds which have highly porous, interconnected macropores, and rough surface could promote ADSC to differentiate into osteoblasts and bone formation.
Class imbalance ubiquitously exists in real life, which has attracted much interest from various domains. Direct learning from imbalanced dataset may pose unsatisfying results overfocusing on the accuracy of identification and deriving a suboptimal model. Various methodologies have been developed in tackling this problem including sampling, cost-sensitive, and other hybrid ones. However, the samples near the decision boundary which contain more discriminative information should be valued and the skew of the boundary would be corrected by constructing synthetic samples. Inspired by the truth and sense of geometry, we designed a new synthetic minority oversampling technique to incorporate the borderline information. What is more, ensemble model always tends to capture more complicated and robust decision boundary in practice. Taking these factors into considerations, a novel ensemble method, called Bagging of Extrapolation Borderline-SMOTE SVM (BEBS), has been proposed in dealing with imbalanced data learning (IDL) problems. Experiments on open access datasets showed significant superior performance using our model and a persuasive and intuitive explanation behind the method was illustrated. As far as we know, this is the first model combining ensemble of SVMs with borderline information for solving such condition.
A novel mapping equivalent approach is proposed in this paper, which can be used for analyzing and realizing a memristor-based dynamical circuit equivalently by a nonlinear dynamical circuit with the same topologies and circuit parameters. A memristor-based chaotic circuit and the corresponding Chua's chaotic circuit with two output differentiators are taken as examples to illustrate this approach. Equivalent dynamical analysis and realization of the memristor-based chaotic circuit are performed by using Chua's chaotic circuit. The results indicate that the outputs of memristor-based chaotic circuit and the corresponding outputs of Chua's chaotic circuit have identical dynamics. The proposed approach verified by numerical simulations and experimental observations is useful in designing and analyzing memristor-based dynamical circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.