Spleen tyrosine kinase (Syk) is a critical target protein for treating immunoreceptor signalling-mediated allergies. In this study, a virtual screening of an in-house Chinese medicine database followed by biological assays was carried out to identify novel Syk inhibitors. A molecular docking method was employed to screen for compounds with potential Syk inhibitory activity. Then, an in vitro kinase inhibition assay was performed to verify the Syk inhibitory activity of the virtual screening hits. Subsequently, a β-hexosaminidase release assay was conducted to evaluate the anti-mast cell degranulation activity of the active compounds. Finally, tanshinone I was confirmed as a Syk inhibitor (IC50 = 1.64 μM) and exhibited anti-mast cell degranulation activity in vitro (IC50 = 2.76 μM). Docking studies showed that Pro455, Gln462, Leu377, and Lys458 were key amino acid residues for Syk inhibitory activity. This study demonstrated that tanshinone I is a Syk inhibitor with mast cell degranulation inhibitory activity. Tanshinone I may be a potential lead compound for developing effective and safe Syk-inhibiting drugs.
Phosphodiesterase 10A (PDE10A) has been confirmed to be an important target for the treatment of central nervous system (CNS) disorders. The purpose of the present study was to identify PDE10A inhibitors from herbs used in traditional Chinese medicine. Pharmacophore and molecular docking techniques were used to virtually screen the chemical molecule database of Sophora flavescens, a well‑known Chinese herb that has been used for improving mental health and regulating the CNS. The pharmacophore model generated recognized the common functional groups of known PDE10A inhibitors. In addition, molecular docking was used to calculate the binding affinity of ligand‑PDE10A interactions and to investigate the possible binding pattern. Virtual screening based on the pharmacophore model and molecular docking was performed to identify potential PDE10A inhibitors from S. flavescens. The results demonstrated that nine hits from S. flavescens were potential PDE10A inhibitors, and their biological activity was further validated using literature mining. A total of two compounds were reported to inhibit cyclic adenosine monophosphate phosphodiesterase, and one protected against glutamate‑induced oxidative stress in the CNS. The remaining six compounds require further bioactivity validation. The results of the present study demonstrated that this method was a time‑ and cost‑saving strategy for the identification of bioactive compounds from traditional Chinese medicine.
Three new alkamides, achilleamide B‐D (1–3) along with five known alkamides (4–8) were isolated from the aerial parts of Achillea alpina L. Structures were elucidated by spectroscopic analysis. Modified Mosher's method and electronic circular dichroism (ECD) calculations were introduced for the absolute configuration of 3. The neuroprotective effects of all the compounds were evaluated by 6‐hydroxydopamine (6‐OHDA)‐induced cell death in human neuroblastoma SH‐SY5Y cells, with concentration for 50 % of maximal effect (EC50) values of 3.16–24.75 μM, and the structure–activity relationship was conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.