SUMMARY The microstructures of catalyst layers (CLs) in proton exchange membrane fuel cells determine cell performance and durability. Delicate ink preparation processes and coating/drying processes affect the resulting microstructures including active sites, pore networks, ionomer networks and Pt/C networks. This paper reports our recent experimental observations of the effect of ink dilution and evaporation condition on the microstructures. The microstructures of dried ink droplets are presented and compared among different dilution ratios and different evaporation conditions in terms of the spatial distributions of Pt/C particles, ionomers, and pores. The method through which the microstructures are visualized is also introduced in this paper. It is observed that ink dilution ratio and evaporation condition can significantly alter resulting microstructure patterns through affecting viscosity and particle flow patterns during the evaporation. More concentrated solution makes catalyst inks less spread out on a substrate surface, leading to larger droplet height and larger contact angle. Ambient relative humidity has a significant impact on catalyst deposition patterns. Under low relative humidity condition, catalyst particles are concentrated both near the central and the periphery of the droplet; while under high relative humidity, the central part is uniform, and the particles move towards the edge of the deposition, forming a stripe‐like structure. This indicates that ink dilution and evaporation is key to the CL microstructure formation and must be properly controlled in order to obtain the quality and consistency of the CLs in fabrication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.