Abscisic acid (ABA) is a classical phytohormone which plays an important role in plant stress resistance. Moreover, ABA is also found to regulate the activation of innate immune cells and glucose homeostasis in mammals. Therefore, this ‘stress hormone’ is of great importance to theoretical research and agricultural and medical applications. Botrytis cinerea is a well-known phytopathogenic ascomycete that synthesizes ABA via a pathway substantially different from higher plants. Identification of the functional genes involved in ABA biosynthesis in B. cinerea would be of special interest. We developed an ABA-overproducing mutant strain, B. cinerea TBC-A, previously and obtained a 41.5-Mb genome sequence of B. cinerea TBC-A. In this study, the transcriptomes of B. cinerea TBC-A and its ancestral strain TBC-6 were sequenced under identical fermentation conditions. A stringent comparative transcriptome analysis was performed to identify differentially expressed genes participating in the metabolic pathways related to ABA biosynthesis in B. cinerea. This study provides the first global view of the transcriptional changes underlying the very different ABA productivity of the B. cinerea strains and will expand our knowledge of the molecular basis for ABA biosynthesis in B. cinerea.
Botrytis cinerea is a model species with great importance as a pathogen of plants and has become used for biotechnological production of ABA. The ABA cluster of B. cinerea is composed of an open reading frame without significant similarities (bcaba3), followed by the genes (bcaba1 and bcaba2) encoding P450 monooxygenases and a gene probably coding for a short-chain dehydrogenase/reductase (bcaba4). In B. cinerea ATCC58025, targeted inactivation of the genes in the cluster suggested at least three genes responsible for the hydroxylation at carbon atom C-1' and C-4' or oxidation at C-4' of ABA. Our group has identified an ABA-overproducing strain, B. cinerea TB-3-H8. To differentiate TB-3-H8 from other B. cinerea strains with the functional ABA cluster, the DNA sequence of the 12.11-kb region containing the cluster of B. cinerea TB-3-H8 was determined. Full-length cDNAs were also isolated for bcaba1, bcaba2, bcaba3 and bcaba4 from B. cinerea TB-3-H8. Sequence comparison of the four genes and their flanking regions respectively derived from B. cinerea TB-3-H8, B05.10 and T4 revealed that major variations were located in intergenic sequences. In B. cinerea TB-3-H8, the expression profiles of the four function genes under ABA high-yield conditions were also analyzed by real-time PCR.
In order to efficiently introduce DNA into B. subtilis ZK, which produces iturin A at a high level, we optimized seven electroporation conditions and explored an efficient electroporation method. Using the optimal conditions, the electroporation efficiency was improved to 1.03 × 107 transformants/μg of DNA, an approximately 10,000-fold increase in electroporation efficiency. This efficiency is the highest electroporation efficiency for B. subtilis and enables the construction of a directed evolution library or the knockout of a gene in B. subtilis ZK for molecular genetics studies. In the optimization process, the combined effects of three types of wall-weakening agents were evaluated using a response surface methodology (RSM) design, which led to a two orders of magnitude increase in electroporation efficiency. To the best of our limited knowledge, this study provides the first demonstration of using an RSM design for optimization of the electroporation conditions for B. subtilis. To validate the electroporation efficiency, a case study was performed and a gene (rapC) was inactivated in B. subtilis ZK using a suicide plasmid pMUTIN4. Moreover, we found that the rapC mutants exhibited a marked decrease in iturin A production, suggesting that the rapC gene was closely related to the iturin A production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.