This paper puts forward a complete track forecasting models, using Kalman filter to track and predict the movement of objects without prior knowledge. Use the extracted Harris corner to calculate optical flow between two frames by L-K pyramid method, getting the convex hull of moving objects by optical flow clustering to separate the moving objects from background. Tracking and predicting the gravity of moving objects convex hull can solve the occlusion and separation problem between moving objects. Computer simulation and field test results show that the proposed method has higher tracking accuracy, and small amount of calculation.
The visual quality of medical images is an important aspect in PACS implementation. In this study, on the basis of wavelet analysis, a denoising and enhancement algorithm for medical image is proposed. The algorithm mainly includes six steps. At first, an effcient method is investigated for Poisson Noise remove. Second, diagnosis features of the denoised image are enhanced by compressing the dynamic range. Third, we extract the high frequency component of the original image by the designed lowpass filter. Fourth, the extracted high frequency component are segment into diagnosis feature component in the high signal range, the diagnosis feature component in the low signal range, and the noise component. Five, we reconstruct an image using image fusion. Finally, we make DICOM calibration for used display and decide parameters of the image fusion, resulting in the diagnosis image. Experimental results show that this new scheme offers effective noise removal in medical images and enhancing sharpness. More importantly, this scheme can improve the diagnostic value of the display image on the commercial display successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.