For the problem that manual adjustment of the parameters of controller in sensorless control system costs too much time, manpower and always can not get a good result, a new method based on improved particle swarm optimization algorithm is proposed to optimize the parameters. The improved algorithm is based on the standard particle swarm optimization with the simulated annealing algorithm and chaotic search brought in. The speed of motor is estimated by the extend Kalman filter. The error between measured speed and estimated speed of the permanent magnet synchronous motor rotor is used as the fitness function in order that the parameters in the covariance matrix is adjusted.The result of simulation indicates that high estimation precision can be got and the motor represents steadily with few of ripple of the actual speed.With this method, the time of adjustment is reduced and manpower is saved. In addition, the validity of the method is proved in experiment with dSPACE.
A cluster kernel semi-supervised support vector machine (CKS3VM) based on spectral cluster algorithm is proposed and applied in winch fault classification in this paper. The spectral clustering method is used to re-represent original data samples in an eigenvector space so as to make the data samples in the same cluster gather together much better. Then, a cluster kernel function is constructed upon the eigenvector space. Finally, a cluster kernel S3VM is designed which can satisfy the cluster assumption of semi-supervised study. The experiments on winch fault classification show that the novel approach has high classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.