Magnetically actuated micro/nanorobots are typical micro- and nanoscale artificial devices with favorable attributes of quick response, remote and contactless control, harmless human-machine interaction and high economic efficiency. Under external magnetic actuation strategies, they are capable of achieving elaborate manipulation and navigation in extreme biomedical environments. This review focuses on state-of-the-art progresses in design strategies, fabrication techniques and applications of magnetically actuated micro/nanorobots. Firstly, recent advances of various robot designs, including helical robots, surface walkers, ciliary robots, scaffold robots and biohybrid robots, are discussed separately. Secondly, the main progresses of common fabrication techniques are respectively introduced, and application achievements on these robots in targeted drug delivery, minimally invasive surgery and cell manipulation are also presented. Finally, a short summary is made, and the current challenges and future work for magnetically actuated micro/nanorobots are discussed.
Graphene composites possess great application potential in various fields including flexible electrodes, wearable sensors and biomedical devices owing to their excellent mechanical and electrical properties. However, it remains challenging to fabricate graphene composites-based devices with high consistency due to the gradual aggression effect of graphene during fabrication process. Herein, we propose a method for one-step fabricating graphene / polymer composite-based devices from graphite / polymer solution by using electrohydrodynamic printing (EHD) with the Weissenberg effect (EPWE). Taylor-Couette flows with high shearing speed were generated to exfoliate high-quality graphene with a rotating steel microneedle coaxially set in a spinneret tube. The effects of the rotating speed of the needle, spinneret size and precursor ingredients on the graphene concentration were discussed. As a proof of concept, EPGW was used to successfully fabricate graphene / PCL bio-scaffolds with good biocompatibility and graphene / TPU strain sensor for detecting human motions with a maximum gauge factor more than 2400 from 40 to 50% strain. As such, this method sheds a new light on one-step in situ fabrication of graphene / polymer composite based devices from graphite solution with low cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.