Dust pollution in open-pit coal mines severely restricts the green development of mines. Therefore, dust control has become an important requirement for the sustainable development of the mining industry. With the goal of dust pollution prevention and control in open-pit coal mines, this paper puts forward the concept of a non-disturbance area of an open-pit coal mine. It clarifies the characteristics of dust generation, the coverage area, and the dust particle size distribution characteristics of the non-disturbance area. Taking the dust control at the dump site as an example, the study comprehensively utilizes indoor tests and field tests to develop a dust suppressant for the dump site and determine its dust suppression efficiency and effective service cycle. The results show that the D10, D50, and D90 particle sizes of dust in the non-disturbance area are smaller than those in the disturbance area, and the difference in particle size of D90 is the most obvious. Gelatinized starch and non-ionic polyacrylamide, as the main components of the dust suppressant, can effectively reduce dust pollution in the dump; the optimal concentration is 1.0%, and the dust suppression service cycle is more than one month. The developed dust suppressant does not contain corrosive, toxic, or heavy metal elements. Although the application of a dust suppressant will cause plant growth to lag, it does not affect plant health. The research findings serve as a reference for the zoning treatment of dust in open-pit mines.
Step blasting is an important part of open-pit mining, which is accompanied by hazards such as large blasting blocks, flying stone splashing, blasting noises, and blasting dust during the blasting process. In order to reduce the harm caused by blasting, this paper uses impact dynamics and rock dynamics to explain the deformation damage and motion law caused by detonation of the material blocked by the gun hole. By simulating the motion of the blocked material in the gun hole, the motion and failure characteristics of the blocked material in the gun hole are revealed. In this paper, geological polymer is introduced into the field of open-pit mine blasting, and 700 g rock powder, 200 g slag, 40 g NaOH solution (30%), and 140 g water glass with a modulus of 3.2 and 80 g of water are selected to prepare geological polymer-modified plugging materials to change rock powder blockage from bulk to solid, and improve the plugging performance. Finally, a field test was carried out in the open-pit mine explosion area, and a comparative test was carried out through the high-speed photography system; it is demonstrated that the modified blocking material could improve the blockage ability of the gun hole, reduce the large block rate of the upper part of the step, reduce the amount of dust, reduce the amount of flying stone, and improve the production efficiency and safety.
The coal shed is an enclosed space where raw coal is stored and handled. The intensive operation of the machinery inside the coal shed generates a large amount of dust, and the wind speed inside the enclosed space easily leads to a high concentration of dust, which endangers the physical and mental health of the workers. In this paper, we first studied the particle size distribution of dust samples in the coal shed and found that 12.2% of the dust in the air of the coal shed was 10–100 μm, 87.8% was less than 10 μm, and 72.9% was less than 2.5 μm. Fluent was used to simulate the law of dust dispersion in the coal shed under different working conditions, and finally, the simulation results were used to guide the design of the ventilation site and dust-reduction scenario. The experimental and simulation results show that under the same working conditions, the average dust reduction efficiency of the ventilation method in which the north side and south side pump air outside was 9.9%. The ventilation method in which the north side blows inside and the south side pumps outside was 23.7%. The average dust reduction efficiency of the ventilation method in which the north side blows inside and the south side pumps outside + placing the fan in the middle was 59.9%. The research results can provide some reference value for indoor air quality improvement.
The existing mining procedure for coal surface mining is perforation-blasting-mining-loading-transportation-disposal, in which the blasting link has problems such as low loading efficiency due to poor blasting effects and environmental pollution caused by the dust generated by blasting. This paper presents a detailed analysis of the mechanical characteristics of the aqueous media, its role in transferring energy during blasting, the role of the aqueous media in energy transfer, and the bubble pulsation phenomenon. The dynamic process of blasting was simulated with the help of TrueGrid/LS-DYNA finite element analysis software to study the changes in the maximum principal stresses at the perimeter of the hole, the top and the foot of the slope. Finally, blasting field tests were carried out in conjunction with actual mine production conditions. The dust reduction rate of aqueous media blasting reached 75%, and a comprehensive evaluation of two groups of traditional dry hole blasting and three groups of aqueous media blasting was carried out using the AHP-fuzzy comprehensive evaluation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.