River terraces are the principal geomorphic features for unraveling tectonics, sea level, and climate conditions during the evolutionary history of a river. The increasing availability of high-resolution topography data generated by low-cost Unmanned Aerial Systems (UAS) and modern photogrammetry offer an opportunity to identify and characterize these features. In this paper, we assessed the capabilities of UAS-based Structure-from-Motion (SfM) photogrammetry, coupled with a river terrace detection algorithm for mapping of river terraces over a 1.9 km2 valley of complex terrain setting, with a focus on the performance of this latest technology over such complex terrains. With the proposed image acquisition approach and SfM photogrammetry, we constructed a 3.8 cm resolution orthomosaic and digital surface model (DSM). The vertical accuracy of DSM was assessed against 196 independent checkpoints measured with a real-time kinematic (RTK) GPS. The results indicated that the root mean square error (RMSE) and mean absolute error (MAE) were 3.1 cm and 2.9 cm, respectively. These encouraging results suggest that this low-cost, logistically simple method can deliver high-quality terrain datasets even in the complex terrain, competitive with those obtained using more expensive laser scanning. A simple algorithm was then employed to detect river terraces from the generated DSM. The results showed that three levels of river terraces and a high-level floodplain were identified. Most of the detected river terraces were confirmed by field observations. Despite the highly erosive nature of fluvial systems, this work obtained good results, allowing fast analysis of fluvial valleys and their comparison. Overall, our results demonstrated that the low-cost UAS-based SfM technique could yield highly accurate ultrahigh-resolution topography data over complex terrain settings, making it particularly suitable for quick and cost-effective mapping of micro to medium-sized geomorphic features under such terrains in remote or poorly accessible areas. Methods discussed in this paper can also be applied to produce highly accurate digital terrain data over large spatial extents for some other places of complex terrains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.