pH-sensitive polymeric micelles and nanogels have recently been developed to target slightly acidic extracellular pH environment of solid tumors. The pH targeting approach is regarded as a more general strategy than conventional specific tumor cell surface targeting approaches, because the acidic tumor microclimate is most common in solid tumors. When nanosystems are combined with triggered release mechanisms by endosomal or lysosomal acidity plus endosomolytic capability, the nanocarriers demonstrated to overcome multidrug resistance of various tumors. This review highlights recent progress of the pH-sensitive nanotechnology developed in Bae research group.
Multifunctional nanoparticles that are tumor-targeted drug carriers, long-lasting ultrasound contrast agents, and enhancers of ultrasound-mediated drug delivery have been developed and deserve further exploration as cancer therapeutics.
As an alternative to cell specific cancer targeting strategies (which are often afflicted with the heterogeneity of cancer cells as with most biological systems), a novel polymeric micelle constitute of two block copolymers of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine)-TAT (transactivator of transcription) and poly(L-histidine)-b-poly(ethylene glycol) was developed. The micelle formed via the dialysis method was approximately 95 nm in diameter and contained 15 wt. % of doxorubicin (DOX) by weight. The micelle surface hides TAT during circulation, which has the strong capability to translocate the micelle into cells, and exposes TAT at a slightly acidic tumor extracellular pH to facilitate the internalization process. The micelle core was engineered for disintegration in early endosomal pH of tumor cells, quickly releasing DOX. The ionization process of the block copolymers and ionized polymers assisted in disrupting the endosomal membrane. This processes permitted high DOX concentrations in the cytosol and its target site of the nucleus, thus increasing DOX potency in various wild and multidrug resistant (MDR) cell lines (3.8-8.8 times lower IC 50 than free DOX, depending on cell line). When tested with the xenografted tumors of human ovarian tumor drug-resistant A2780/AD, human breast tumor drug-sensitive MCF-7, human lung tumor A549 and human epidermoid tumor KB in a nude mice model, all tumors significantly regressed in size by three bolus injections at a dose of DOX 10 mg equivalent/kg body per injection of DOX-loaded micelle at three day interval, while minimum weight loss was observed. This approach may replace the need for cell-specific antibodies or targeting ligands, thereby providing a general strategy for solid tumor targeting.
A new class of multifunctional nanoparticles that combine properties of polymeric drug carriers, ultrasound imaging contrast agents, and enhancers of ultrasound-mediated drug delivery has been developed. At room temperature, the developed systems comprise perfluorocarbon nanodroplets stabilized by the walls made of biodegradable block copolymers. Upon heating to physiological temperatures, the nanodroplets convert into nano/microbubbles. The phase state of the systems and bubble size may be controlled by the copolymer/perfluorocarbon volume ratio. Upon intravenous injections, a long-lasting, strong and selective ultrasound contrast is observed in the tumor volume indicating nanobubble extravasation through the defective tumor microvasculature, suggesting their coalescence into larger, highly echogenic microbubbles in the tumor tissue. Under the action of tumor-directed ultrasound, microbubbles cavitate and collapse resulting in a release of the encapsulated drug and dramatically enhanced intracellular drug uptake by the tumor cells. This effect is tumor-selective; no accumulation of echogenic microbubbles is observed in other organs. Effective chemotherapy of the MDA MB231 breast cancer tumors has been achieved using this technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.