Microrobots have attracted considerable attention due to their extensive applications in microobject manipulation and targeted drug delivery. To realize more complex micro-/nanocargo manipulation (e.g., encapsulation and release) in biological applications, it is highly desirable to endow microrobots with a shape-morphing adaptation to dynamic environments. Here, environmentally adaptive shape-morphing microrobots (SMMRs) have been developed by programmatically encoding different expansion rates in a pH-responsive hydrogel. Due to a combination with magnetic propulsion, a shape-morphing microcrab (SMMC) is able to perform targeted microparticle delivery, including gripping, transporting, and releasing by “opening–closing” of a claw. As a proof-of-concept demonstration, a shape-morphing microfish (SMMF) is designed to encapsulate a drug (doxorubicin (DOX)) by closing its mouth in phosphate-buffered saline (PBS, pH ∼ 7.4) and release the drug by opening its mouth in a slightly acidic solution (pH < 7). Furthermore, localized HeLa cell treatment in an artificial vascular network is realized by “opening–closing” of the SMMF mouth. With the continuous optimization of size, motion control, and imaging technology, these magnetic SMMRs will provide ideal platforms for complex microcargo operations and on-demand drug release.
Several natural organism can change shape under external stimuli. These natural phenomena have inspired a vast amount of research on exploration and implementation of reconfigurable shape transformation. The Janus structure is a promising approach to achieve shape transformation based on its heterogeneous chemical or physical properties on opposite sides. However, the heterogeneity is generally realized by multi-step processing, different materials, and/or different processing parameters. Here, we present a simple and flexible method of producing pH-sensitive Janus microactuators from a single material, using the same laser printing parameters. These microactuators exhibit reversible structural deformations with large bending angles of ∼31° and fast response (∼0.2 s) by changing the pH value of the aqueous environment. Benefited from the high flexibility of the laser printing technique and the spatial arrangements, pillar heights, and bending directions of microactuators are readily controlled, enabling a variety of switchable ordered patterns and complex petal-like structures on flat surfaces and inside microchannels. Finally, we explore the potential applications of this method in information encryption/decryption and microtarget capturing.
Micromachines with high environmental adaptability have the potential to deliver targeted drugs in complex biological networks, such as digestive, neural, and vascular networks. However, the low processing efficiency and single processing material of current 4D printing methods often limit the development and application of shape‐morphing micromachines (SMMs). Here, two 4D printing strategies are proposed to fabricate SMMs with pH‐responsive hydrogels for complex micro‐networks traversing. On the one hand, the 3D vortex light single exposure technique can rapidly fabricate a tubular SMM with controllable size and geometry within 0.1 s. On the other hand, the asymmetric multimaterial direct laser writing (DLW) method is used to fabricate SMMs with designable 3D structures composed of hydrogel and platinum nanoparticles (Pt NPs). Based on the presence of ferroferric oxide (Fe3O4) and Pt NPs in the SMMs, efficient magnetic, bubble, and hybrid propulsion modes are achieved. Finally, it is demonstrated that the spatial shape conversion capabilities of these SMMs can be used for narrow micronetworks traversing, which will find potential applications in targeted cargo delivery in microcapillaries.
Three-dimensional chiral metallic metamaterials have already attracted extensive attention in the wide research fields of chiroptical responses. These artificial chiral micronanostructures, possessing strong chiroptical signals, show huge significance in next-generation photonic devices and chiroptical spectroscopy techniques. However, most of the existing chiral metallic metamaterials are designed for generating chiroptical signals dependent on photonic spin angular momentum (SAM). The chiral metallic metamaterials for generating strong chiroptical responses by photonic orbital angular momentum (OAM) remain unseen. In this work, we fabricate copper microhelices with opposite handedness by additively manufacturing and further examine their OAM-dominated chiroptical response: helical dichroism (HD). The chiral copper microhelices exhibit differential reflection to the opposite OAM states, resulting in a significant HD signal (∼50%). The origin of the HD can be theoretically explained by the difference in photocurrent distribution inside copper microhelices under opposite OAM states. Moreover, the additively manufactured copper microhelices possess an excellent microstructural stability under varying annealing temperatures for robust HD responses. Lower material cost and noble-metal-similar optical properties, accompanied with well thermal stability, render the copper microhelices promising metamaterials in advanced chiroptical spectroscopy and photonic OAM engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.