There is growing production for lithium-ion batteries (LIBs) to satisfy the booming development renewable energy storage systems. Meanwhile, amounts of spent LIBs have been generated and will become more soon. Therefore, the proper disposal of these spent LIBs is of significant importance. Graphite is the dominant anode in most commercial LIBs. This review specifically focuses on the recent advances in the recycling of graphite anode (GA) from spent LIBs. It covers the significance of GA recycling from spent LIBs, the introduction of the GA aging mechanisms in LIBs, the summary of the developed GA recovery strategies, and the highlight of reclaimed GA for potential applications. In addition, the prospect related to the future challenges of GA recycling is given at the end. It is expected that this review will provide practical guidance for researchers engaged in the field of spent LIBs recycling.
In this work, an organic/inorganic hybrid polymer containing siloxyl functional groups was synthesized and applied to encapsulate phase change materials (PCMs). Owing to the mild conditions of the hypercrosslinking reaction, which only requires the addition of ac atalytic amount of aqueous alkaline solution, both organic and inorganic PCMs are tolerated. It is noteworthy that the initial homogeneous state of the reaction mixture allowed the ultimate encapsulation rate of the PCMs and the uniform blending of the thirdn anoadditives with the aim of thermal conductivity enhancement. Further study reveals that the presence of this hybrid hydrophobic polymer in aphase change composite endows the latter with au nique self-cleaning property.T his novel PCM encapsulation protocol is suitable for nanoparticles including carbon-based nanomaterials,m etal oxide nanoparticles,a nd inorganic oxide nanoparticles.Athermal conductivity enhancement of 600 %w as achieved along with 93.7 %l ight-tothermal conversion efficiency with al atent heat of 180 Jg À1 without leakage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.