Pyrazinamide is an important sterilizing drug that shortens tuberculosis (TB) therapy. However, the mechanism of action of pyrazinamide is poorly understood because of its unusual properties. Here we show that pyrazinoic acid, the active moiety of pyrazinamide, disrupted membrane energetics and inhibited membrane transport function in Mycobacterium tuberculosis. The preferential activity of pyrazinamide against old non-replicating bacilli correlated with their low membrane potential and the disruption of membrane potential by pyrazinoic acid and acid pH. Inhibitors of membrane energetics increased the antituberculous activity of pyrazinamide. These findings shed new light on the mode of action of pyrazinamide and may help in the design of new drugs that shorten therapy.
Pyrazinamide (PZA) is an important front-line anti-tuberculosis drug that is active only at acid pH. However, acid pH causes signi®cant dif®culty for PZA susceptibility testing. A common problem in PZA testing is false resistance caused by large bacterial inocula. This study investigated the relationship of false resistance to numbers of bacilli, pH and other factors that potentially affect susceptibility to PZA. Large inocula (10 7±8 bacilli=ml) of M. tuberculosis H37Ra caused signi®cant increase in medium pH from 5.5 towards neutrality, and thus produced false resistance results. The increase in medium pH was determined to be a function of live bacilli; heat-killed bacilli had little or no effect. Susceptibility to PZA and its active derivative pyrazinoic acid (POA) was comparable on 7H11 agar medium, but POA was less active than PZA in liquid medium containing bovine serum albumin (BSA), suggesting that susceptibility to PZA or POA was reduced in the presence of BSA, because of its neutralising effect on medium pH and signi®cant POA binding. A 3-month-old H37Ra culture was shown to be more susceptible to PZA exposure than a 4-day log-phase culture, suggesting that PZA is more active for non-growing bacilli. Finally, reserpine, an inhibitor of POA ef¯ux pump, increased susceptibility to PZA even near neutral pH 6.8, with an MIC of 400 mg=L compared with 1000 mg=L without reserpine. These ®ndings should have implications for understanding the mode of action of PZA and for PZA susceptibility testing.
SUMMARY
Here, we report that kinase-dead IKKα knock-in mice develop spontaneous lung squamous cell carcinomas (SCCs) associated with IKKα downregulation and marked pulmonary inflammation. IKKα reduction upregulated the expression of p63, Trim29, and keratin 5 (K5), which serve as diagnostic markers for human lung SCCs. IKKαlowK5+p63hi cell expansion and SCC formation were accompanied by inflammation-associated deregulation of oncogenes, tumor suppressors, and stem cell regulators. Reintroducing transgenic K5.IKKα, depleting macrophages, and reconstituting irradiated mutant animals with WT bone marrow (BM) prevented SCC development, suggesting that BM-derived IKKα-mutant macrophages promote the transition of IKKαlowK5+p63hi cells to tumor cells. This mouse model resembles human lung SCCs, sheds light on the mechanisms underlying lung malignancy development, and identifies targets for therapy of lung SCCs.
Pyrazinamide (PZA) is an important antituberculosis drug. Unlike most antibacterial agents, PZA, despite its remarkable in vivo activity, has no activity against Mycobacterium tuberculosis in vitro except at an acidic pH. M. tuberculosis is uniquely susceptible to PZA, but other mycobacteria as well as nonmycobacteria are intrinsically resistant. The role of acidic pH in PZA action and the basis for the unique PZA susceptibility of M. tuberculosisare unknown. We found that in M. tuberculosis, acidic pH enhanced the intracellular accumulation of pyrazinoic acid (POA), the active derivative of PZA, after conversion of PZA by pyrazinamidase. In contrast, at neutral or alkaline pH, POA was mainly found outside M. tuberculosis cells. PZA-resistantM. tuberculosis complex organisms did not convert PZA into POA. Unlike M. tuberculosis, intrinsically PZA-resistant M. smegmatis converted PZA into POA, but it did not accumulate POA even at an acidic pH, due to a very active POA efflux mechanism. We propose that a deficient POA efflux mechanism underlies the unique susceptibility of M. tuberculosisto PZA and that the natural PZA resistance of M. smegmatis is due to a highly active efflux pump. These findings may have implications with regard to the design of new antimycobacterial drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.