Human activities can affect soil nutrients, thereby influencing river water quality. The spatial pattern of precipitation also impacts distributions of water quality. In this paper, we employed a method that combines point survey, soil, and water quality data to analyze the spatial relationships between precipitation, soil nutrient and water quality in the basin on the basis of field surveys and laboratory analysis. The ordinary kriging method was applied to interpolate the precipitation and soil data, and the spatial pattern was analyzed. The water samples on the main stream and soil samples in the field were collected during both the dry and rainy seasons to analyze the water quality and soil nutrients. The results indicate: (1) The water quality in the dry season is better than that in the rainy season, the water quality in the upper reaches is better than that in the lower reaches, and agricultural activity is the direct source of water pollution. (2) The precipitation in the rainy and dry seasons is differente and the dilution effect of precipitation on pollutant concentrations and transport of water flow affect the spatial distribution of water quality. (3) There is a significant difference in the spatial pattern of soil nutrients between the dry and rainy seasons, and the soil nutrient content and the surface runoff directly affect the water quality. Soil nutrients are affected by human activities, and they potentially act as nonpoint source (NPS) pollution in this river basin. To improve the water quality, suitable agriculture measures need to be implemented.
Based on soil sampling data from the dry season and the rainy season, the spatial heterogeneity and spatial pattern of soil nutrients in the Mun River Basin, Thailand, were studied and the seasonal variation in soil nutrients was analyzed using classical statistical methods and geostatistical methods. The soil nutrient content in the Mun Basin showed moderate and strong variations, and the descending order of soil variability was as follows: available phosphorous (AP) > electric conductivity (EC) > soil organic matter (SOM) > total nitrogen (TN) > pH value in the dry season, with AP showing strong variation, and EC > AP > SOM > TN > pH in the rainy season, with EC showing strong variation. Different soil nutrients and different soil properties had different spatial variation characteristics, and their corresponding best-fitting models were also different. Based on the nugget (C0), sill (C0 + C), and range (A), spatial analysis was performed for the soil nutrients, pH, and EC in the dry season and in the rainy season. Analysis based on kriging spatial interpolation data showed that pH, SOM, TN, and EC had convex or concave distributions, whereas AP had a patchy distribution. Terrain, vegetation, and human disturbance are the main factors that contribute to the differences in the soil nutrient pattern of the Mun River Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.