Chromatin dynamics regulated by epigenetic modification is crucial in genome stability and gene expression. Various epigenetic mechanisms have been identified in the pathogenesis of human diseases. Here, we examined the effects of ten epigenetic agents on pseudorabies virus (PRV) infection by using GFP-reporter assays. Inhibitors of bromodomain protein 4 (BRD4), which receives much more attention in cancer than viral infection, was found to exhibit substantial anti-viral activity against PRV as well as a range of DNA and RNA viruses. We further demonstrated that BRD4 inhibition boosted a robust innate immune response. BRD4 inhibition also de-compacted chromatin structure and induced the DNA damage response, thereby triggering the activation of cGAS-mediated innate immunity and increasing host resistance to viral infection both in vitro and in vivo. Mechanistically, the inhibitory effect of BRD4 inhibition on viral infection was mainly attributed to the attenuation of viral attachment. Our findings reveal a unique mechanism through which BRD4 inhibition restrains viral infection and points to its potent therapeutic value for viral infectious diseases. Author summaryBRD4 has been well investigated in tumorigenesis for its contribution to chromatin remodeling and gene transcription. BRD4 inhibitors are used as promising chemotherapeutic drugs for cancer therapy. Here, we show a unique mechanism through which BRD4 inhibition broadly inhibits attachment of DNA and RNA viruses through DNA damage-dependent antiviral innate immune activation via the cGAS-STING pathway, in both cell culture and an animal model. STING-associated innate immune signaling has been considered to be a new possibility for cancer therapy, and STING agonists have been tested in early clinical trials. Our data identify BRD4 inhibitors as a potent therapy not only for viral infection but also for cancer immunotherapy. PLOS PATHOGENSPLOS Pathogens | https://doi.
Autophagy maintains cellular homeostasis by degrading organelles, proteins, and lipids in lysosomes. Autophagy is involved in the innate and adaptive immune responses to a variety of pathogens. Some viruses can hijack host autophagy to enhance their replication. However, the role of autophagy in porcine reproductive and respiratory syndrome virus (PRRSV) infection is unclear. Here, we show that N-Myc downstream-regulated gene 1 (NDRG1) deficiency induced autophagy, which facilitated PRRSV replication by regulating lipid metabolism. NDRG1 mRNA is expressed ubiquitously in most porcine tissues and most strongly in white adipose tissue. PRRSV infection downregulated the expression of NDRG1 mRNA and protein, while NDRG1 deficiency contributed to PRRSV RNA replication and progeny virus assembly. NDRG1 deficiency reduced the number of intracellular lipid droplets (LDs), but the expression levels of key genes in lipogenesis and lipolysis were not altered. Our results also show that NDRG1 deficiency promoted autophagy and increased the subsequent yields of hydrolyzed free fatty acids (FFAs). The reduced LD numbers, increased FFA levels, and enhanced PRRSV replication were abrogated in the presence of an autophagy inhibitor. Overall, our findings suggest that NDRG1 plays a negative role in PRRSV replication by suppressing autophagy and LD degradation. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-positive-stranded RNA virus, causes acute respiratory distress in piglets and reproductive failure in sows. It has led to tremendous economic losses in the swine industry worldwide since it was first documented in the late 1980s. Vaccination is currently the major strategy used to control the disease. However, conventional vaccines and other strategies do not provide satisfactory or sustainable prevention. Therefore, safe and effective strategies to control PRRSV are urgently required. The significance of our research is that we demonstrate a previously unreported relationship between PRRSV, NDRG1, and lipophagy in the context of viral infection. Furthermore, our data point to a new role for NDRG1 in autophagy and lipid metabolism. Thus, NDRG1 and lipophagy will have significant implications for understanding PRRSV pathogenesis for developing new therapeutics.
MicroRNAs (miRNAs) play an important role in the regulation of many fundamental biological processes in eukaryotes; however, miRNAs associated with immune functions in the common carp have not been reported. In this study, a small-RNA cDNA library was constructed from the spleen of the common carp. A total of 10,603,456 high-quality clean reads, representing 293,603 unique sequences, were obtained from the small-cDNA library using the Solexa sequencing. By the bioinformatic analysis, 194 conserved miRNAs and 12 novel miRNAs were identified in the carp spleen. The abundant miRNAs principally belong to 30 miRNA gene families such as let-7, mir-10, mir-15, mir-30, and so on. The conservation analysis showed that 23 families were present both in protostomes and deuterostomes, 46 families were conserved only in vertebrates, and 5 families (mir-430, mir-722, mir-724, mir-734, and mir-738) were identified only in fish species. Furthermore, GO enrichment analysis and KEGG pathway analysis suggested that miRNAs expressed in the spleen of common carp are involved in immune system development, lymphoid organ development, lymphocyte activation, immune response, B cell receptor signaling pathway, T cell receptor signaling pathway, Fc gamma R-mediated phagocytosis, Toll-like receptor signaling pathway, and so on. This study described the miRNA transcriptome in spleen tissue for the first time in the common carp. The results expand the number of known common carp miRNAs and provides a meaningful framework to understand the common carp immune system and defense mechanisms.
Garlic (Allium sativum L.; Liliaceae) has been widely demonstrated in the role of cancer prevention, but the specific compound in garlic corresponding to this effect and its mechanisms are not clearly known. Allicin is one of the organic sulphur compounds derived from garlic. In the present study we investigated the anti-proliferative and pro-apoptotic activities of allicin in murine T-lymphocytes (EL-4) and the mechanism of inducing apoptosis in vitro. The results showed that allicin was effective in inhibiting the proliferation of EL-4 cells in vitro in a concentration-dependent manner. Further, allicin could induce the formation of apoptotic bodies, nuclear condensation, DNA spallation, and even activated the expression of caspase-3, -12 and cytochrome C (cyt C). Finally, allicin up-regulated the ratio of Bax/Bcl-2 and induced a mitochondrion membrane potential (MMP) decrease. Allicin induced apoptosis in EL-4 cells in a time- and concentration-dependent manner, in which the mitochondrial pathway might play a central role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.