An anisotropic diffusion filtering- (ADF-) ultrasound (ADF-U) for ultrasound reconstruction was constructed based on the ADF to explore the diagnostic application of ultrasound imaging based on electronic health (E-health) for cardiac insufficiency and neuronal regulation in patients with sepsis. The 144 patients with sepsis were divided into an experimental group (78 patients with cardiac insufficiency) and a control group (66 patients with normal cardiac function), and another 58 healthy people were included in a blank control. The ultrasound examination was performed on all patients. In addition, new ultrasound image reconstruction and diagnosis were performed based on ADF and E-health, and its reconstruction effects were compared with those of the Bilateral Filter-ultrasonic (BFU) algorithm and the Wavelet Threshold-ultrasonic (WTU) algorithm. The left and right ventricular parameters and neuropeptide levels were detected and recorded. The results show that the running time, average gradient (AG), and peak signal-to-noise ratio (SNR) (PSNR) of the ADF-U algorithm were greater than those of the Bilateral Filter-ultrasonic (BFU) and Wavelet Threshold-ultrasonic (WTU), but the mean square error (MSE) was opposite ( P < 0.05 ); the left ventricular end-systolic volume (LVESV) and the vertical distance between the mitral valve E-point to septal separation (EPSS) in the experimental group were higher than those in the control and blank group, while the left ventricular ejection fraction (LVEF), stroke volume (SV), cardiac output (CO), and left ventricular fractional shortening (LVFS) were opposite ( P < 0.05 ); the systolic peak velocity of right ventricular free wall tricuspid annulus (Sm) and pulmonary valve blood velocity (PVBV) in the experimental group were lower than those of the control group and blank group ( P < 0.05 ); the messenger ribonucleic acid (mRNA) of Proopiomelanocortin (POMC) and Cocain and amphetamine-regulated transcript (CART) was higher than the mRNA IN control group and blank group ( P < 0.05 ). In short, the ADF-U algorithm proposed in this study improved the resolution, SNR, and reconstruction efficiency of E-health ultrasound images and provided an effective reference value for the diagnosis of cardiac insufficiency and neuronal adjustment analysis in patients with sepsis in the emergency department.
Background: Lateral humeral condyle fracture is the second most common intra-articular fracture in pediatric elbow. Objectives: The present study aimed to analyze the differences between X-ray and magnetic resonance imaging (MRI) in the evaluation of the stability of pediatric lateral humeral condyle fracture and the degree of fracture displacement. Methods: A total of 78 patients with acute elbow trauma were selected and hospitalized in our orthopedic department from July 2018-July 2019. All patients were examined with X-ray and MRI. The sensitivity and specificity of X-ray and MRI in the diagnosis of lateral humeral condyle fracture and the integrity of the trochlear cartilage chain fracture were calculated. The X-ray and MRI were examined respectively to check the value of lateral and posterior fracture space of lateral humeral condyle fracture. Results: Callus repair was observed according to the observation of fracture line during operation or the follow-up imaging examination of conservative treatment. It was confirmed that out of 78 patients with elbow joint trauma, 72 cases were diagnosed with the fracture of lateral condyle of humerus, and the other 6 patients were cured without fracture signs. The sensitivity of MRI in the diagnosis of pediatric lateral condylar fracture was 100%, which was significantly higher than that of X-ray (88.89%) (P<0.05). The results of X-ray and MRI in the diagnosis of pediatric lateral condylar fracture were generally consistent (kappa value = 0.465;< 0.01). Among the 72 confirmed cases, 35 subjects had a fracture of trochlear cartilage chain. The sensitivity of MRI in the diagnosis of pediatric fracture of lateral condyle of humerus was 97.14%, which was significantly higher than that of X-ray (62.86%) (P<0.05). The difference was statistically significant (P<0.05). The sensitivity of 3d-fs-fspgr or 3d-fspgr was significantly higher than that of fs-t2wi and fs-pdwi (P< 0.05). Conclusion: As evidenced by the obtained results, MRI was superior to X-ray in the diagnosis of pediatric humeral epicondylar fracture stability and evaluation of fracture displacement. Furthermore, 3d-fs-fspgr or 3d-fspgr was the best MR sequence to show the pediatric humeral epicondylar fracture. These findings can provide theoretical basis for the establishment of clinical treatment plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.