Citation for published item:wolonyD eter uF nd qregoryD hilip hF nd tiD honghu nd vuD fo nd u¤ oppingerD wi h el F nd ve ueurD gF uth nd fl kleyD g roline vF nd rutsonD teremy wF nd gornishD imon vF @PHIRA 9gre tion of ultr old VU IQQgs mole ules in the rovi r tion l ground st teF9D hysi l review lettersFD IIQ @PSAF pF PSSQHIF Further information on publisher's website:httpXGGdxFdoiForgGIHFIIHQG hys evvettFIIQFPSSQHI Publisher's copyright statement:Reprinted with permission from the American Physical Society: Physical Review Letters 113, 255301 c 2014 by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modi ed, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. We report the creation of a sample of over 1000 ultracold 87 Rb 133 Cs molecules in the lowest rovibrational ground state, from an atomic mixture of 87 Rb and 133 Cs, by magnetoassociation on an interspecies Feshbach resonance followed by stimulated Raman adiabatic passage (STIRAP). We measure the binding energy of the RbCs molecule to be hc × 3811.576ð1Þ cm −1 and the jv 00 ¼ 0; J 00 ¼ 0i to jv 00 ¼ 0; J 00 ¼ 2i splitting to be h × 2940.09ð6Þ MHz. Stark spectroscopy of the rovibrational ground state yields an electric dipole moment of 1.225(3)(8) D, where the values in parentheses are the statistical and systematic uncertainties, respectively. We can access a space-fixed dipole moment of 0.355(2)(4) D, which is substantially higher than in previous work.
A simple, versatile laser system for the creation of ultracold ground state molecules Here we describe how a relatively simple apparatus consisting of a single fixed-length optical cavity can be used to narrow the linewidth of the two different wavelength lasers required for STIRAP simultaneously. The frequency of each of these lasers is referenced to the cavity and is continuously tunable away from the cavity modes through the use of non-resonant electro-optic modulators. Selfheterodyne measurements suggest the laser linewidths are reduced to several 100 Hz. In the context of 87 Rb 133 Cs molecules produced via magnetoassociation on a Feshbach resonance, we demonstrate the performance of the laser system through one-and two-photon molecular spectroscopy. Finally, we demonstrate transfer of the molecules to the rovibrational ground state using STIRAP.
SummaryBiomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed.We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover.We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrientlimited environments.The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients.
We have investigated photoassociative formation of RbCs molecules in the (2) 3 excited state correlated to v = 8, (5)0 + vibrational level in detail. The metastable ground-state RbCs molecules formed by spontaneous decay are ionized by pulsed dye laser through resonance-enhanced two-photon ionization. A rate equation of the photoionization process is introduced to explain the dependence of RbCs + molecular ion intensity on the ionization laser intensity. The saturation effect of molecular ion intensity appears as the photoassociation laser intensity increases. The rotational constant and centrifugal distortion constant are derived to be 0.01304 cm −1 and 0.000015 cm −1 from the photoassociation spectrum with a high sensitivity, respectively. The measured electric dipole moment of the observed (2) 3 state RbCs molecules is 4.7(6) D by Stark effect in static electric field.
We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.