SUMMARYThe self-incompatibility (SI) response occurs widely in flowering plants as a means of preventing selffertilization. In these self/non-self discrimination systems, plant pistils reject self or genetically related pollen. In the Solanaceae, Plantaginaceae and Rosaceae, pistil-secreted S-RNases enter the pollen tube and function as cytotoxins to specifically arrest self-pollen tube growth. Recent studies have revealed that the S-locus F-box (SLF) protein controls the pollen expression of SI in these families. However, the precise role of SLF remains largely unknown. Here we report that PhSSK1 (Petunia hybrida SLF-interacting Skp1-like1), an equivalent of AhSSK1 of Antirrhinum hispanicum, is expressed specifically in pollen and acts as an adaptor in an SCF(Skp1-Cullin1-F-box) SLF complex, indicating that this pollen-specific SSK1-SLF interaction occurs in bothPetunia and Antirrhinum, two species from the Solanaceae and Plantaginaceae, respectively. Substantial reduction of PhSSK1 in pollen reduced cross-pollen compatibility (CPC) in the S-RNase-based SI response, suggesting that the pollen S determinant contributes to inhibiting rather than protecting the S-RNase activity, at least in solanaceous plants. Furthermore, our results provide an example that a specific Skp1-like protein other than the known conserved ones can be recruited into a canonical SCF complex as an adaptor.
Self-incompatibility (SI) is a genetically controlled system adopted by many flowering plants to avoid inbreeding and thus to maintain species diversity. Generally, self-pollen rejection occurs through active pollen and pistil recognition and subsequent signaling responses. So far, three different molecular controls of pollen and pistil recognition have been characterized and are exemplified by three families: the Solanaceae, the Papaveraceae, and the Brassicaceae. With more components involved in these SI systems coming to light, recent studies have provided intriguing insights into the downstream reactions that follow the initial SI signal perception. The process of pollen rejection is closely associated with rapid and effective proteolytic events, including the ubiquitin-proteasome pathway and the vacuolar sorting pathway. Here, we review our current understanding of the roles of proteolysis in SI responses of flowering plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.