Ring-opening copolymerization (ROCP) of benzylsulfonyl macroheterocyclosiloxane (BSM) and five different cyclosiloxanes was systematically investigated. A general approach for the synthesis of benzylsulfonyl-containing silicone copolymers with various substituents, including methyl, vinyl, ethyl, and phenyl, was developed herein. A series of copolymers with variable incorporation (from 6 % to 82 %) of BSM were obtained by modifying the comonomer feed ratio and using KOH as the catalyst in a mixed solvent of dimethylformamide and toluene. The obtained copolymers exhibited various composition-dependent properties and unique viscoelasticity. Notably, the surface and fluorescent characteristics as well as the glass transition temperatures of the copolymers could be tailored by varying the amount of BSM. Unlike typical sulfonecontaining polymers, such as poly(olefin sulfone)s, the prepared copolymers displayed excellent thermal and hydrolytic stability. The universal strategy developed in the present study provides a platform for the design of innovative silicone copolymers with adjustable structures and performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.