Autophagy occurs prior to apoptosis and plays an important role in cell death regulation during spinal cord injury (SCI). This study aimed to determine the effects and potential mechanism of the glucagon-like peptide-1 (GLP-1) agonist extendin-4 (Ex-4) in SCI. Seventy-two male Sprague Dawley rats were randomly assigned to sham, SCI, 2.5 μg Ex-4, and 10 μg Ex-4 groups. To induce SCI, a 10-g iron rod was dropped from a 20-mm height to the spinal cord surface. Ex-4 was administered via intraperitoneal injection immediately after surgery. Motor function evaluation with the Basso Beattie Bresnahan (BBB) locomotor rating scale indicated significantly increased scores (p < 0.01) in the Ex-4-treated groups, especially 10 μg, which demonstrated the neuroprotective effect of Ex-4 after SCI. The light chain 3-II (LC3-II) and Beclin 1 protein expression determined via western blot and the number of autophagy-positive neurons via immunofluorescence double labeling were increased by Ex-4, which supports promotion of autophagy (p < 0.01). The caspase-3 protein level and neuronal apoptosis via transferase UTP nick end labeling (TUNEL)/NeuN/DAPI double labeling were significantly reduced in the Ex-4-treated groups, which indicates anti-apoptotic effects (p < 0.01). Finally, histological assessment via Nissl staining demonstrated the Ex-4 groups exhibited a significantly greater number of surviving neurons and less cavity (p < 0.01). To our knowledge, this is the first study to indicate that Ex-4 significantly enhances motor function in rats after SCI, and these effects are associated with the promotion of autophagy and inhibition of apoptosis.
Mitochondrial division inhibitor 1 (Mdivi-1) is the most effective pharmacological inhibitor of mitochondrial fission. Spinal cord injury (SCI) is a common and serious trauma, which lacks efficient treatment. This study aimed to detect the role of Mdivi-1 in neuronal injury and its underlying mechanism after acute SCI (ASCI) in rats. Western blot analysis showed that Bax levels on the mitochondrial outer membrane, and release of cytochrome C (cytC) and apoptosis-inducing factor (AIF) from the mitochondria began to increase significantly at 4 h after ASCI, then peaked at 16 h, and declined significantly from 16 to 24 h. However, the mitochondrial levels of Bcl-2 increased significantly at 2 h, peaked at 4 h, and subsequently significantly decreased from 4 to 24 h after ASCI. In addition, Mdivi-1(1.2 mg/kg) significantly suppressed the translocation of dynamin-related protein 1 (Drp1) and Bax to the mitochondria, mitochondrial depolarization, decrease of ATP and reduced Glutathione, increase of the Malondialdehyde, cytC release, and AIF translocation at 16 h and 3 days after ASCI, and also inhibited the caspase-3 activation and decrease of the percentage of apoptotic cells at 16 h, 3 and 10 days, further, ameliorated the motor dysfunction greatly from 3 to 10 days after ASCI in rats. This neuroprotective effect was dose-dependent. However, Mdivi-1(1.2 mg/kg) had no effects on the translocation of Bcl-2 and fission protein 1 on the mitochondria, and did not affect the expression of total Drp1 at 16 h after ASCI. Our experimental findings indicated that Mdivi-1 can protect rats against ASCI, and that its underlying mechanism may be associated with inhibition of Drp1 translocation to the mitochondria, alleviation of mitochondrial dysfunction and oxidative stress, and suppression of caspase-dependent and -independent apoptosis.
Salvianolic acid B (Sal B), a bioactive compound isolated from the Chinese medicinal herb danshen, is commonly used for the prevention and treatment of cardiovascular disease. The present study was performed to investigate the effect of Sal B on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a rat model. Sal B (1, 10, and 50 mg/kg i.v.) was administered to rats immediately following SCI. The permeability of the BSCB and spinal cord tissue water content were evaluated. Additionally, the expression levels of tight junction proteins and heme oxygenase-1 (HO-1) were monitored by Western blot analysis. Enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 24 h post-SCI to evaluate the expression of inflammation-related cytokines. In addition, the motor recovery of SCI rats was assessed using the Basso, Beattie, and Bresnahan scoring system. Compared to the SCI group, rats treated with Sal B (10, 50 mg/kg) exhibited significantly reduced spinal cord tissue water content and BSCB permeability. Further, the motor function of rats was also greatly improved by Sal B administration. The expression of pro-inflammatory factors TNF-α and NF-κB was found to be greatly increased 24 h post-SCI, and this upregulation was significantly attenuated by Sal B treatment. The expression of ZO-1 and occludin was upregulated by Sal B (10 mg/kg) treatment after SCI, and this effect was blocked by the HO-1 inhibitor ZnPP. Taken together, our results clearly indicate that Sal B attenuates SCI by promoting the repair of the damaged BSCB, demonstrating that this molecule is a novel and promising therapeutic agent for human SCI.
Spinal cord injury (SCI) is a common and devastating central nervous system insult which lacks efficient treatment. Our previous experimental findings indicated that dynamin-related protein 1 (Drp1) mediates mitochondrial fission during SCI, and inhibition of Drp1 plays a significant protective effect after SCI in rats. Dynasore inhibits GTPase activity at both the plasma membrane (dynamin 1, 2) and the mitochondria membrane (Drp1). The aim of the present study was to investigate the beneficial effects of dynasore on SCI and its underlying mechanism in a rat model. Sprague-Dawley rats were randomly assigned to sham, SCI, and 1, 10, and 30 mg dynasore groups. The rat model of SCI was established using an established Allen's model. Dynasore was administered via intraperitoneal injection immediately. Results of motor functional test indicated that dynasore ameliorated the motor dysfunction greatly at 3, 7, and 10 days after SCI in rats (P < 0.05). Results of western blot showed that dynasore has remarkably reduced the expressions of Drp1, dynamin 1, and dynamin 2 and, moreover, decreased the Bax, cytochrome C, and active Caspase-3 expressions, but increased the expressions of Bcl-2 at 3 days after SCI (P < 0.05). Notably, the upregulation of proliferating cell nuclear antigen (PCNA) and glial fibrillary acidic protein (GAFP) are inhibited by dynasore at 3 days after SCI (P < 0.05). Results of immunofluorescent double labeling showed that there were less apoptotic neurons and proliferative astrocytes in the dynasore groups compared with SCI group (P < 0.05). Finally, histological assessment via Nissl staining demonstrated that the dynasore groups exhibited a significantly greater number of surviving neurons compared with the SCI group (P < 0.05). This neuroprotective effect was dose-dependent (P < 0.05). To our knowledge, this is the first study to indicate that dynasore significantly enhances motor function which may be by inhibiting the activation of neuronal mitochondrial apoptotic pathway and astrocytic proliferation in rats after SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.