Molecular property prediction (e.g., energy) is an essential problem in chemistry and biology. Unfortunately, many supervised learning methods usually suffer from the problem of scarce labeled molecules in the chemical space, where such property labels are generally obtained by Density Functional Theory (DFT) calculation which is extremely computational costly. An effective solution is to incorporate the unlabeled molecules in a semi-supervised fashion. However, learning semi-supervised representation for large amounts of molecules is challenging, including the joint representation issue of both molecular essence and structure, the conflict between representation and property leaning. Here we propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules. Specifically, ASGN adopts a teacher-student framework. In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution. Then in the student model, we target at property prediction task to deal with the learning loss conflict. At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning. We conduct extensive experiments on several public datasets. Experimental results show the remarkable performance of our ASGN framework.
In this paper we study how to fairly allocate a set of m indivisible chores to a group of n agents, each of which has a general additive cost function on the items. Since envy-free (EF) allocation is not guaranteed to exist, we consider the notion of envy-freeness up to any item (EFX). In contrast to the fruitful results regarding the (approximation of) EFX allocations for goods, very little is known for the allocation of chores. Prior to our work, for the allocation of chores, it is known that EFX allocations always exist for two agents, or general number of agents with identical ordering cost functions. For general instances, no non-trivial approximation result regarding EFX allocation is known. In this paper we make some progress in this direction by showing that for three agents we can always compute a 5-approximation of EFX allocation in polynomial time. For n>=4 agents, our algorithm always computes an allocation that achieves an approximation ratio of 3n^2 regarding EFX. We also study the bi-valued instances, in which agents have at most two cost values on the chores, and provide polynomial time algorithms for the computation of EFX allocation when n=3, and (n-1)-approximation of EFX allocation when n>=4.
Generating molecules with desired properties is an important task in chemistry and pharmacy. An efficient method may have a positive impact on finding drugs to treat diseases like COVID-19. Data mining and artificial intelligence may be good ways to find an efficient method. Recently, both the generative models based on deep learning and the work based on genetic algorithms have made some progress in generating molecules and optimizing the molecule's properties. However, existing methods need to be improved in efficiency and performance. To solve these problems, we propose a method named the Chemical Genetic Algorithm for Large Molecular Space (CALM). Specifically, CALM employs a scalable and efficient molecular representation called molecular matrix. Then, we design corresponding crossover, mutation, and mask operators inspired by domain knowledge and previous studies. We apply our genetic algorithm to several tasks related to molecular property optimization and constraint molecular optimization. The results of these tasks show that our approach outperforms the other state-of-the-art deep learning and genetic algorithm methods, where the z tests performed on the results of several experiments show that our method is more than 99% likely to be significant. At the same time, based on the experimental results, we point out the insufficiency in the experimental evaluation standard which affects the fair evaluation of previous work. Supplementary Information The online version contains supplementary material available at 10.1007/s11390-021-0970-3.
Facial expression recognition (FER) has made significant progress over the past few years. But how to overcome the problem of high inter-class similarity and large intra-class difference in FER is still challenging. To address this problem, we propose a novel FER framework called AU-assisted Visual Transformer (AVT) by incorporating facial action units (AU) information into Visual Transformer, which mainly consists of three modules: Local Feature Extraction (LFE) module, Global Relationship Modeling (GRM) module and AU Fusion Module (AFM). Specifically, the LFE module aims to extract local facial expression features by using a deep convolutional neural network, the GRM module is a multi-layer Transformer encoder that captures the relation between local facial regions and obtains a global understanding of the face, and in particular, the AFM introduces fine-grained AU feature and fuses it with expression feature for final classification. Extensive experiments are conducted on RAF-DB and FERPlus datasets, and our AVT achieves competitive results compared to previous state-of-the-art methods, demonstrating the effectiveness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.