BackgroundAmong patients who are discharged from the Emergency Department (ED), about 3% return within 30 days. Revisits can be related to the nature of the disease, medical errors, and/or inadequate diagnoses and treatment during their initial ED visit. Identification of high-risk patient population can help device new strategies for improved ED care with reduced ED utilization.Methods and FindingsA decision tree based model with discriminant Electronic Medical Record (EMR) features was developed and validated, estimating patient ED 30 day revisit risk. A retrospective cohort of 293,461 ED encounters from HealthInfoNet (HIN), Maine's Health Information Exchange (HIE), between January 1, 2012 and December 31, 2012, was assembled with the associated patients' demographic information and one-year clinical histories before the discharge date as the inputs. To validate, a prospective cohort of 193,886 encounters between January 1, 2013 and June 30, 2013 was constructed. The c-statistics for the retrospective and prospective predictions were 0.710 and 0.704 respectively. Clinical resource utilization, including ED use, was analyzed as a function of the ED risk score. Cluster analysis of high-risk patients identified discrete sub-populations with distinctive demographic, clinical and resource utilization patterns.ConclusionsOur ED 30-day revisit model was prospectively validated on the Maine State HIN secure statewide data system. Future integration of our ED predictive analytics into the ED care work flow may lead to increased opportunities for targeted care intervention to reduce ED resource burden and overall healthcare expense, and improve outcomes.
ObjectivesIdentifying patients at risk of a 30-day readmission can help providers design interventions, and provide targeted care to improve clinical effectiveness. This study developed a risk model to predict a 30-day inpatient hospital readmission for patients in Maine, across all payers, all diseases and all demographic groups.MethodsOur objective was to develop a model to determine the risk for inpatient hospital readmission within 30 days post discharge. All patients within the Maine Health Information Exchange (HIE) system were included. The model was retrospectively developed on inpatient encounters between January 1, 2012 to December 31, 2012 from 24 randomly chosen hospitals, and then prospectively validated on inpatient encounters from January 1, 2013 to December 31, 2013 using all HIE patients.ResultsA risk assessment tool partitioned the entire HIE population into subgroups that corresponded to probability of hospital readmission as determined by a corresponding positive predictive value (PPV). An overall model c-statistic of 0.72 was achieved. The total 30-day readmission rates in low (score of 0–30), intermediate (score of 30–70) and high (score of 70–100) risk groupings were 8.67%, 24.10% and 74.10%, respectively. A time to event analysis revealed the higher risk groups readmitted to a hospital earlier than the lower risk groups. Six high-risk patient subgroup patterns were revealed through unsupervised clustering. Our model was successfully integrated into the statewide HIE to identify patient readmission risk upon admission and daily during hospitalization or for 30 days subsequently, providing daily risk score updates.ConclusionsThe risk model was validated as an effective tool for predicting 30-day readmissions for patients across all payer, disease and demographic groups within the Maine HIE. Exposing the key clinical, demographic and utilization profiles driving each patient’s risk of readmission score may be useful to providers in developing individualized post discharge care plans.
Objectives To test the hypothesis that an exploratory proteomics analysis of urine proteins with subsequent development of validated urine biomarker panels would produce molecular classifiers for both the diagnosis and prognosis of infants with necrotizing enterocolitis (NEC). Study design Urine samples were collected from 119 premature infants (85 NEC, 17 sepsis, 17 control) at the time of initial clinical concern for disease. The urine from 59 infants was used for candidate biomarker discovery by liquid chromatography/mass spectrometry. The remaining 60 samples were subject to enzyme-linked immunosorbent assay for quantitative biomarker validation. Results A panel of 7 biomarkers (alpha-2-macroglobulin-like protein 1, cluster of differentiation protein 14, cystatin 3, fibrinogen alpha chain, pigment epithelium-derived factor, retinol binding protein 4, and vasolin) was identified by liquid chromatography/mass spectrometry and subsequently validated by enzyme-linked immunosorbent assay. These proteins were consistently found to be either up- or down-regulated depending on the presence, absence, or severity of disease. Biomarker panel validation resulted in a receiver-operator characteristic area under the curve of 98.2% for NEC vs sepsis and an area under the curve of 98.4% for medical NEC vs surgical NEC. Conclusions We identified 7 urine proteins capable of providing highly accurate diagnostic and prognostic information for infants with suspected NEC. This work represents a novel approach to improving the efficiency with which we diagnose early NEC and identify those at risk for developing severe, or surgical, disease.
Objective Necrotising enterocolitis (NEC) is a major source of neonatal morbidity and mortality. The management of infants with NEC is currently complicated by our inability to accurately identify those at risk for progression of disease prior to the development of irreversible intestinal necrosis. We hypothesised that integrated analysis of clinical parameters in combination with urine peptide biomarkers would lead to improved prognostic accuracy in the NEC population. Design Infants under suspicion of having NEC (n=550) were prospectively enrolled from a consortium consisting of eight university-based paediatric teaching hospitals. Twenty-seven clinical parameters were used to construct a multivariate predictor of NEC progression. Liquid chromatography/mass spectrometry was used to profile the urine peptidomes from a subset of this population (n=65) to discover novel biomarkers of NEC progression. An ensemble model for the prediction of disease progression was then created using clinical and biomarker data. Results The use of clinical parameters alone resulted in a receiver-operator characteristic curve with an area under the curve of 0.817 and left 40.1% of all patients in an ‘indeterminate’ risk group. Three validated urine peptide biomarkers (fibrinogen peptides: FGA1826, FGA1883 and FGA2659) produced a receiver-operator characteristic area under the curve of 0.856. The integration of clinical parameters with urine biomarkers in an ensemble model resulted in the correct prediction of NEC outcomes in all cases tested. Conclusions Ensemble modelling combining clinical parameters with biomarker analysis dramatically improves our ability to identify the population at risk for developing progressive NEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.