BackgroundAs a high-prevalence health condition, hypertension is clinically costly, difficult to manage, and often leads to severe and life-threatening diseases such as cardiovascular disease (CVD) and stroke.ObjectiveThe aim of this study was to develop and validate prospectively a risk prediction model of incident essential hypertension within the following year.MethodsData from individual patient electronic health records (EHRs) were extracted from the Maine Health Information Exchange network. Retrospective (N=823,627, calendar year 2013) and prospective (N=680,810, calendar year 2014) cohorts were formed. A machine learning algorithm, XGBoost, was adopted in the process of feature selection and model building. It generated an ensemble of classification trees and assigned a final predictive risk score to each individual.ResultsThe 1-year incident hypertension risk model attained areas under the curve (AUCs) of 0.917 and 0.870 in the retrospective and prospective cohorts, respectively. Risk scores were calculated and stratified into five risk categories, with 4526 out of 381,544 patients (1.19%) in the lowest risk category (score 0-0.05) and 21,050 out of 41,329 patients (50.93%) in the highest risk category (score 0.4-1) receiving a diagnosis of incident hypertension in the following 1 year. Type 2 diabetes, lipid disorders, CVDs, mental illness, clinical utilization indicators, and socioeconomic determinants were recognized as driving or associated features of incident essential hypertension. The very high risk population mainly comprised elderly (age>50 years) individuals with multiple chronic conditions, especially those receiving medications for mental disorders. Disparities were also found in social determinants, including some community-level factors associated with higher risk and others that were protective against hypertension.ConclusionsWith statewide EHR datasets, our study prospectively validated an accurate 1-year risk prediction model for incident essential hypertension. Our real-time predictive analytic model has been deployed in the state of Maine, providing implications in interventions for hypertension and related diseases and hopefully enhancing hypertension care.
BackgroundAmong patients who are discharged from the Emergency Department (ED), about 3% return within 30 days. Revisits can be related to the nature of the disease, medical errors, and/or inadequate diagnoses and treatment during their initial ED visit. Identification of high-risk patient population can help device new strategies for improved ED care with reduced ED utilization.Methods and FindingsA decision tree based model with discriminant Electronic Medical Record (EMR) features was developed and validated, estimating patient ED 30 day revisit risk. A retrospective cohort of 293,461 ED encounters from HealthInfoNet (HIN), Maine's Health Information Exchange (HIE), between January 1, 2012 and December 31, 2012, was assembled with the associated patients' demographic information and one-year clinical histories before the discharge date as the inputs. To validate, a prospective cohort of 193,886 encounters between January 1, 2013 and June 30, 2013 was constructed. The c-statistics for the retrospective and prospective predictions were 0.710 and 0.704 respectively. Clinical resource utilization, including ED use, was analyzed as a function of the ED risk score. Cluster analysis of high-risk patients identified discrete sub-populations with distinctive demographic, clinical and resource utilization patterns.ConclusionsOur ED 30-day revisit model was prospectively validated on the Maine State HIN secure statewide data system. Future integration of our ED predictive analytics into the ED care work flow may lead to increased opportunities for targeted care intervention to reduce ED resource burden and overall healthcare expense, and improve outcomes.
ObjectivesIdentifying patients at risk of a 30-day readmission can help providers design interventions, and provide targeted care to improve clinical effectiveness. This study developed a risk model to predict a 30-day inpatient hospital readmission for patients in Maine, across all payers, all diseases and all demographic groups.MethodsOur objective was to develop a model to determine the risk for inpatient hospital readmission within 30 days post discharge. All patients within the Maine Health Information Exchange (HIE) system were included. The model was retrospectively developed on inpatient encounters between January 1, 2012 to December 31, 2012 from 24 randomly chosen hospitals, and then prospectively validated on inpatient encounters from January 1, 2013 to December 31, 2013 using all HIE patients.ResultsA risk assessment tool partitioned the entire HIE population into subgroups that corresponded to probability of hospital readmission as determined by a corresponding positive predictive value (PPV). An overall model c-statistic of 0.72 was achieved. The total 30-day readmission rates in low (score of 0–30), intermediate (score of 30–70) and high (score of 70–100) risk groupings were 8.67%, 24.10% and 74.10%, respectively. A time to event analysis revealed the higher risk groups readmitted to a hospital earlier than the lower risk groups. Six high-risk patient subgroup patterns were revealed through unsupervised clustering. Our model was successfully integrated into the statewide HIE to identify patient readmission risk upon admission and daily during hospitalization or for 30 days subsequently, providing daily risk score updates.ConclusionsThe risk model was validated as an effective tool for predicting 30-day readmissions for patients across all payer, disease and demographic groups within the Maine HIE. Exposing the key clinical, demographic and utilization profiles driving each patient’s risk of readmission score may be useful to providers in developing individualized post discharge care plans.
BackgroundDiabetes case finding based on structured medical records does not fully identify diabetic patients whose medical histories related to diabetes are available in the form of free text. Manual chart reviews have been used but involve high labor costs and long latency.ObjectiveThis study developed and tested a Web-based diabetes case finding algorithm using both structured and unstructured electronic medical records (EMRs).MethodsThis study was based on the health information exchange (HIE) EMR database that covers almost all health facilities in the state of Maine, United States. Using narrative clinical notes, a Web-based natural language processing (NLP) case finding algorithm was retrospectively (July 1, 2012, to June 30, 2013) developed with a random subset of HIE-associated facilities, which was then blind tested with the remaining facilities. The NLP-based algorithm was subsequently integrated into the HIE database and validated prospectively (July 1, 2013, to June 30, 2014).ResultsOf the 935,891 patients in the prospective cohort, 64,168 diabetes cases were identified using diagnosis codes alone. Our NLP-based case finding algorithm prospectively found an additional 5756 uncodified cases (5756/64,168, 8.97% increase) with a positive predictive value of .90. Of the 21,720 diabetic patients identified by both methods, 6616 patients (6616/21,720, 30.46%) were identified by the NLP-based algorithm before a diabetes diagnosis was noted in the structured EMR (mean time difference = 48 days).ConclusionsThe online NLP algorithm was effective in identifying uncodified diabetes cases in real time, leading to a significant improvement in diabetes case finding. The successful integration of the NLP-based case finding algorithm into the Maine HIE database indicates a strong potential for application of this novel method to achieve a more complete ascertainment of diagnoses of diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.