Research comparing conventional litter and alternative perforated flooring (netting) systems is relatively limited under commercial production conditions. A comprehensive comparison of broiler production performances, welfare quality, and housing environment of two broiler houses with conventional litter and new perforated plastic floors was conducted over four flocks for eight months in eastern China. The two broiler houses each had 31,700 broilers per flock on average and were ventilated using a negative-pressure system. Prior to the onset of the monitoring, litter/manure in all houses was removed. The environmental conditions, gaseous concentrations, and ventilation rate were recorded continuously. Production performance and welfare quality data were collected weekly. Results showed that indoor temperature and relative humidity were not affected by the different floors when the two houses had the same ventilation configuration and management. The average ammonia concentration was lower at 10.44 ppm in the litter house compared to 15.02 ppm in the netting flooring house due to the manure accumulation under the floor. Broiler production performance including live weight, feed conversion, and mortality, was not affected by the netting floor compared to the litter system. In addition, the results suggested that birds raised in the netting floor house may increase breast blister incidence. In this study, the welfare quality parameters including hock and foot pad lesions, lameness, and fearfulness levels were similar in both for both flooring systems.
This study quantifies concentrations and emission rates (ER) of ammonia (NH3) and greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from a naturally ventilated cage layer (Hy-Line brown strain) house with daily manure removal, located in northeast China during four seasons of one year, with each monitoring episode lasting five consecutive days. Gaseous concentrations of background and exhaust air were measured using an infrared photoacoustic multi-gas monitor with a multi-channel sampler. Building ventilation rate (VR) was determined by CO2 mass balance using literature metabolic rate data for modern laying hens. Both gas concentrations and ER showed considerable diurnal and seasonal variations. Annual mean (±SD) ER of NH3, CO2, CH4, and N2O for the monitored layer house were, in mg d-1 bird
The decline in soil quality is becoming a significant process of soil degradation. Optimizing organic fertilizer incorporation practices in cropland is essential to enhancing crop productivity and soil health. However, that requires a comprehensive understanding of crop yield and soil quality reaction across an application gradient of organic fertilizer. We investigated the effect of organic fertilizer incorporation practices on crop yield, soil quality, and fauna feeding activity from fluvo-aquic soils on wheat (Triticum aestivum)-maize (Zea mays) rotation field. The six treatments included were unfertilized N control (UC), traditional chemical fertilizer application (TF, 600 N kg ha−1 year−1), and recommended chemical fertilization (RF, 400 N kg ha−1 year−1) with no organic fertilizer application rate, low-level 15.0 (RFLO), medium-level 30.0 (RFMO), and high-level 45.0 t ha−1 year−1 (RFHO) application, respectively. The research findings show that the yield with organic fertilizer incorporation treatments increased 26.4%–44.6% for wheat and 12.5%–40.8% for maize compared to RF plots. The long-term organic fertilizer incorporation rate increased organic carbon from 54.7% to 110.6% versus UC plots and 27.9%–74.0% versus chemical fertilizer (TF and RF) treatments, and the total nitrogen content of soil increased from 41.8% to 59.2%, and 24.6%–39.2%. The long-term inorganic fertilizer combined with organic fertilizer incorporation practices significantly enhanced soil sucrose (30.1%–51.9%), urease (28.4%–38.3%), and β-1,4-glucosidase (34.6%–122.4%) activity. Still, nitrite reductase, polyphenol oxidase, and catalase significantly lower 27.3%–49.9%, 8.5%–26.3% and 23.3%–34.3% than single applications of inorganic N fertilizer groups. Meanwhile, the results showed that organic fertilizer incorporation practices improved soil fauna feeding activity by 35.2%–42.5%, and the excessive application of inorganic N fertilizer reduced the activity level of soil fauna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.