BackgroundThe exposure of skin keratinocytes to Ultraviolet (UV) irradiation leads to Akt phosphorylation at Ser-473, which is important for the carcinogenic effects of excessive sun exposure. The present study investigated the underlying mechanism of Akt Ser-473 phosphorylation by UVB radiation.ResultsWe found that DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and mammalian target of rapamycin (mTOR) complex 2 (mTORC2) were both required for UVB-induced Akt Ser-473 phosphorylation in keratinocytes. Inhibition of DNA-PKcs activity via its inhibitor NU7026, a dominant-negative kinase-dead mutation, RNA interference (RNAi) or gene depletion led to the attenuation of UVB-induced Akt Ser-473 phosphorylation. Meanwhile, siRNA silencing or gene depletion of SIN1, a key component of mTORC2, abolished Akt Ser-473 phosphorylation by UVB. Significantly, we discovered that DNA-PKcs was associated with SIN1 in cytosol upon UVB radiation, and this complexation appeared required for Akt Ser-473 phosphorylation. Meanwhile, this DNA-PKcs-SIN1 complexation by UVB was dependent on epidermal growth factor receptor (EGFR) activation, and was disrupted by an EGFR inhibitor (AG1478) or by EGFR depletion. UVB-induced complexation between DNA-PKcs and mTORC2 components was also abolished by NU7026 and DNA-PKcs mutation. Finally, we found that both DNA-PKcs and SIN1 were associated with apoptosis resistance of UVB radiation, and inhibition of them by NU7026 or genetic depletion significantly enhanced UVB-induced cell death and apoptosis.ConclusionTaken together, these results strongly suggest that DNA-PKcs-mTORC2 association is required for UVB-induced Akt Ser-473 phosphorylation and cell survival, and might be important for tumor cell transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.