All-inorganic CsPbX3 (X = Cl, Br, and I) perovskite quantum dots (PeQDs) have shown great promise in optoelectronics and photovoltaics owing to their outstanding linear optical properties; however, nonlinear upconversion is limited by the small cross-section of multiphoton absorption, necessitating high power density excitation. Herein, we report a convenient and versatile strategy to fine tuning the upconversion luminescence in CsPbX3 PeQDs through sensitization by lanthanide-doped nanoparticles. Full-color emission with wavelengths beyond the availability of lanthanides is achieved through tailoring of the PeQDs bandgap, in parallel with the inherent high conversion efficiency of energy transfer upconversion under low power density excitation. Importantly, the luminescent lifetimes of the excitons can be enormously lengthened from the intrinsic nanosecond scale to milliseconds depending on the lifetimes of lanthanide ions. These findings provide a general approach to stimulate photon upconversion in PeQDs, thereby opening up a new avenue for exploring novel and versatile applications of PeQDs.
The research in circularly polarized luminescence has attracted wide interest in recent years. Efforts on one side are directed toward the development of chiral materials with both high luminescence efficiency and dissymmetry factors, and on the other side, are focused on the exploitations of these materials in optoelectronic applications. This review summarizes the recent frontiers (mostly within five years) in the research in circularly polarized luminescence, including the development of chiral emissive materials based on organic small molecules, compounds with aggregation-induced emissions, supramolecular assemblies, liquid crystals and liquids, polymers, metal-ligand coordination complexes and assemblies, metal clusters, inorganic nanomaterials, and photon upconversion systems. In addition, recent applications of related materials in organic light-emitting devices, circularly polarized light detectors, and organic lasers and displays are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.