In multitarget tracking, the issue of sensor control is a challenging problem in theoretical analysis and calculation. In this paper, we study the sensor control strategies for multitask planning based on information criteria and propose two sensor control strategies according to the two different task objectives. Initially, we propose a sensor control strategy to improve the overall multitarget tracking performance within the partially observed Markov decision process (POMDP) framework, where the reward function is calculated by the Bhattacharyya distance between the prior and the posterior multitarget densities. In this strategy, we present a target-oriented multi-Bernoulli (TOMB) particle sampling method to approximate the multitarget density and then derive the solution of Bhattacharyya distance in detail. Subsequently, as another important contribution of this paper, we propose a threat-based sensor control strategy, which is still solved under the information theory where the goal is to prioritize multiple threat targets and then to track preferentially the maximum threat target. These strategies are finally used to optimize the sensor trajectory for range-bearing multitarget tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.