The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig (S. scrofa), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs.
Background: Obese and lean pig breeds show obvious differences in muscle growth; however, the molecular mechanism underlying phenotype variation remains unknown. Prenatal muscle development programs postnatal performance. Here, we describe a genome-wide analysis of differences in prenatal skeletal muscle between Tongcheng (a typical indigenous Chinese breed) and Landrace (a leaner Western breed) pigs.
Long intergenic non-coding RNAs (lincRNAs) play important roles in many cellular processes. Here, we present the first systematic identification and characterization of lincRNAs in fetal porcine skeletal muscle. We obtained a total of 55.02 million 90-bp paired-end reads and assembled 54,550 transcripts using cufflinks. We developed a pipeline to identify 570 multi-exon lincRNAs by integrating a set of previous approaches. These putative porcine lincRNAs share many characteristics with mammalian lincRNAs, such as a relatively short length, small number of exons and low level of sequence conservation. We found that the porcine lincRNAs were preferentially located near genes mediating transcriptional regulation rather than those with developmental functions. We further experimentally analyzed the features of a conserved mouse lincRNA gene and found that isoforms 1 and 4 of this lincRNA were enriched in the cell nucleus and were associated with polycomb repressive complex 2 (PRC2). Our results provide a catalog of fetal porcine lincRNAs for further experimental investigation of the functions of these genes in the skeletal muscle developmental process.
Background: miRNAs participate in the regulation of skeletal muscle development. Results: miR-148a promotes myogenic differentiation and down-regulates ROCK1 gene at the translational level. Conclusion: miR-148a plays a positive role in skeletal muscle development via ROCK1 down-regulation. Significance: Our findings reveal a novel mechanism in which miR-148a controls myogenesis through the RhoA/ROCK pathyway.
DNA methylation is important for the epigenetic regulation of gene expression and plays a critical role in mammalian development. However, the dynamic regulation of genome-wide DNA methylation in skeletal muscle development remains largely unknown. Here, we generated the first single-base resolution DNA methylome and transcriptome maps of porcine skeletal muscle across 27 developmental stages. The overall methylation level decreased from the embryo to the adult, which was highly correlated with the downregulated expression of DNMT1 and an increase in partially methylated domains. Notably, we identified over 40 000 developmentally differentially methylated CpGs (dDMCs) that reconstitute the developmental trajectory of skeletal muscle and associate with muscle developmental genes and transcription factors (TFs). The dDMCs were significantly under-represented in promoter regulatory regions but strongly enriched as enhancer histone markers and in chromatin-accessible regions. Integrative analysis revealed the negative regulation of both promoter and gene body methylation in genes associated with muscle contraction and insulin signaling during skeletal muscle development. Mechanistically, DNA methylation affected the expression of muscle-related genes by modulating the accessibly of upstream myogenesis TF binding, indicating the involvement of the DNA methylation/SP1/IGF2BP3 axis in skeletal myogenesis. Our results highlight the function and regulation of dynamic DNA methylation in skeletal muscle development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.