Abstract:Tremendous progress has been made in object recognition with deep convolutional neural networks (CNNs), thanks to the availability of large-scale annotated dataset. With the ability of learning highly hierarchical image feature extractors, deep CNNs are also expected to solve the Synthetic Aperture Radar (SAR) target classification problems. However, the limited labeled SAR target data becomes a handicap to train a deep CNN. To solve this problem, we propose a transfer learning based method, making knowledge learned from sufficient unlabeled SAR scene images transferrable to labeled SAR target data. We design an assembled CNN architecture consisting of a classification pathway and a reconstruction pathway, together with a feedback bypass additionally. Instead of training a deep network with limited dataset from scratch, a large number of unlabeled SAR scene images are used to train the reconstruction pathway with stacked convolutional auto-encoders (SCAE) at first. Then, these pre-trained convolutional layers are reused to transfer knowledge to SAR target classification tasks, with feedback bypass introducing the reconstruction loss simultaneously. The experimental results demonstrate that transfer learning leads to a better performance in the case of scarce labeled training data and the additional feedback bypass with reconstruction loss helps to boost the capability of classification pathway.
Deep convolutional neural networks (DCNNs) have attracted much attention in remote sensing recently. Compared with the large-scale annotated dataset in natural images, the lack of labeled data in remote sensing becomes an obstacle to train a deep network very well, especially in SAR image interpretation. Transfer learning provides an effective way to solve this problem by borrowing the knowledge from the source task to the target task. In optical remote sensing application, a prevalent mechanism is to fine-tune on an existing model pre-trained with a large-scale natural image dataset, such as ImageNet. However, this scheme does not achieve satisfactory performance for SAR application because of the prominent discrepancy between SAR and optical images. In this paper, we attempt to discuss three issues that are seldom studied before in detail:(1) what network and source tasks are better to transfer to SAR targets, (2) in which layer are transferred features more generic to SAR targets and (3) how to transfer effectively to SAR targets recognition. Based on the analysis, a transitive transfer method via multi-source data with domain adaptation is proposed in this paper to decrease the discrepancy between the source data and SAR targets. Several experiments are conducted on OpenSARShip. The results indicate that the universal conclusions about transfer learning in natural images cannot be completely applied to SAR targets, and the analysis of what and where to transfer in SAR target recognition is helpful to decide how to transfer more effectively.Index Terms-SAR target recognition, transfer learning, deep convolutional neural networks, domain adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.