Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the fifth rib, and the sixth cervical (C6) vertebra were used to produce digital models. These were then used to produce 1:1 scale physical models with the FDM printer. The anatomical features of the digital models and three-dimensional (3D) printed models were then compared with those of the original skeletal specimens. The results of this study demonstrated that both digital and physical scale models of animal skeletal components could be rapidly produced using 3D printing technology. In terms of accuracy between models and original specimens, the standard deviations of the femur and the fifth rib measurements were 0.0351 and 0.0572, respectively. All of the features except the nutrient foramina on the original bone specimens could be identified in the digital and 3D printed models. Moreover, the 3D printed models could serve as a viable alternative to original bone specimens when used in anatomy education, as determined from student surveys. This study demonstrated an important example of reproducing bone models to be used in anatomy education and veterinary clinical training. Anat Sci Educ 11: 73-80. © 2017 American Association of Anatomists.
Scutellaria altissima L. is a common traditional Chinese medicine used to treat inflammation in some countries. Scutellarin, an active major flavone glycoside isolated from the traditional Chinese medicine Scutellaria altissima L., has been shown to offer various beneficial biochemical effects on cerebrovascular diseases and inflammation. However, the antiproliferative effects of Scutellarin in prostate cancer and the underlying mechanism are not fully elucidated. In the present study, we aimed to ascertain whether Scutellarin inhibits cancer cell growth and to further explore the molecular mechanism. Scutellarin enhanced the sensitivity of prostate cancer cells to cisplatin. MTT assays revealed that cell viability was significantly decreased in the prostate cancer cells treated with Scutellarin. Flow cytometric analysis indicated that Scutellarin suppressed cell proliferation by promoting G2/M arrest and inducing apoptosis. We employed western blotting to delineate the underlying mechanisms involved in the G2/M arrest and apoptosis. Comet assay and γH2AX immunocytochemistry were used to detect levels of DNA damage in PC3 cells exposed to Scutellarin and/or cisplatin. Our data revealed that Scutellarin significantly induced prostate cancer cell apoptosis by activating the caspase cascade. An increase in the Bax/Bcl-2 ratio, depolarization of mitochondrial membrane potential and cell cycle arrest at G2/M phase were accompanied by the apoptosis induction. Additionally, Scutellarin altered the protein expression of cell cycle and apoptosis regulatory genes by downregulating Cdc2, cyclin B1 and Bcl-2 and upregulating caspase-3, caspase-9 and Bax in prostate cancer cells. Furthermore, Scutellarin sensitized PC3 cells to cisplastin treatment in a dose-dependent manner. Taken together, our data confirmed the cytotoxicity of Scutellarin against prostate cancer PC3 cells and provide new findings in regards to Scutellarin sensitizing prostate cancer cells to chemotherapy. Our findings suggest that Scutellarin has potential to be used as a novel antineoplastic therapeutic candidate for prostate cancer patients.
Baicalin, an active flavone isolated from Scutellaria baicalensis Georgi, has been demonstrated to induce various beneficial biochemical effects such as anti-inflammatory, anti-viral, and antitumor effects. However, the antitumor mechanism of baicalin is not well understood. In the present study, baicalin was demonstrated to inhibit the viability and migration of a widely used ovarian cancer cell line, A2780, in a dose-dependent manner. MTT assays revealed that cell viability significantly decreased in ovarian cancer cells treated with baicalin compared with untreated cells, without effect on normal ovarian cells. Flow cytometric analysis indicated that baicalin suppressed cell proliferation by inducing apoptosis. The underlying mechanisms involved were indicated to be downregulation of the anti-apoptotic protein B-cell lymphoma 2 apoptosis regulator and activation of caspase-3 and −9. In addition, wound healing and transwell assays revealed that cell migratory potential and expression of matrix metallopeptidase (MMP)-2 and MMP-9 were significantly inhibited when cells were exposed to baicalin, compared with untreated cells. The present study therefore suggested that baicalin has the potential to be used in novel anti-cancer therapeutic formulations for treatment of ovarian cancer.
Low development of somatic cell nuclear transfer embryos could be due to the incomplete DNA methylation reprogramming, and Dnmt1s existing in donor cells may be one cause of this disrupted DNA methylation reprogramming. However, the reprogramming pattern of Dnmt1s and its effect on DNA methylation reprogramming in cloned embryos remain poorly understood. Here, we displayed that along with the significantly higher Dnmt1 expression at the zygotic gene activation stage of cloned embryos, genomic methylation level was markedly upregulated, and the arrested rate was significantly higher compared with their in vitro fertilization counterparts. Then, we demonstrated that Dnmt1s, not Dnmt1o, methylation and expression levels in cloned embryos were significantly higher from the 1-cell to 4-cell stage but markedly lower at the blastocyst stage. When Dnmt1s in donor cells was appropriately removed, more cloned embryos passed through the zygotic gene activation stage and the blastocyst rate significantly increased. Furthermore, Dnmt1s knockdown significantly improved itself and genomic methylation reconstruction in cloned embryos. Finally, we found that Dnmt1s removal significantly promoted the demethylation and expression of pluripotent genes in cloned embryos. Taken together, these data suggest that Dnmt1s in donor cells is a critical barrier to somatic cell nuclear transfer mediated DNA methylation reprogramming, impairing the development of cloned embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.