Camelid-derived single-domain antibody-fragments (~15kDa), called nanobodies, are a new class of molecular tracers that are routinely identified with nanomolar affinity for their target and that are easily tailored for molecular imaging and drug delivery applications. We hypothesized that they are well-suited for the design of targeted microbubbles (μBs) and aimed to develop and characterize eGFP- and VCAM-1-targeted μBs. Anti-eGFP (cAbGFP4) and anti-VCAM-1 (cAbVCAM1-5) nanobodies were site-specifically biotinylated in bacteria. This metabolic biotinylation method yielded functional nanobodies with one biotin located at a distant site of the antigen-binding region of the molecule. The biotinylated nanobodies were coupled to biotinylated lipid μBs via streptavidin-biotin bridging. The ability of μB-cAbGFP4 to recognize eGFP was tested as proof-of-principle by fluorescent microscopy and confirmed the specific binding of eGFP to μB-cAbGFP4. Dynamic flow chamber studies demonstrated the ability of μB-cAbVCAM1-5 to bind VCAM-1 in fast flow (up to 5 dynes/cm2). In vivo targeting studies were performed in MC38 tumor-bearing mice (n=4). μB-cAbVCAM1-5 or control μB-cAbGFP4 were injected intravenously and imaged using a contrast-specific ultrasound imaging mode. The echo intensity in the tumor was measured 10 minutes post-injection. μB-cAbVCAM1-5 showed an enhanced signal compared to control μBs (p<0.05). Using metabolic and site-specific biotinylation of nanobodies, a method to develop nanobody-coupled μBs was described. The application of VCAM-1-targeted μBs as novel molecular ultrasound contrast agent was demonstrated both in vitro and in vivo.
Glucagon counterregulation (GCR) is a key protection against hypoglycemia that is compromised in diabetes via an unknown mechanism. To test the hypothesis that alpha-cell-inhibiting signals that are switched off during hypoglycemia amplify GCR, we studied streptozotocin (STZ)-treated male Wistar rats and estimated the effect on GCR of intrapancreatic infusion and termination during hypoglycemia of saline, insulin, and somatostatin. Times 10 min before and 45 min after the switch-off were analyzed. Insulin and somatostatin, but not saline, switch-off significantly increased the glucagon levels (P = 0.03), and the fold increases relative to baseline were significantly higher (P < 0.05) in the insulin and somatostatin groups vs. the saline group. The peak concentrations were also higher in the insulin (368 pg/ml) and somatostatin (228 pg/ml) groups vs. the saline (114 pg/ml) group (P < 0.05). GCR was pulsatile in most animals, indicating a feedback regulation. After the switch-off, the number of secretory events and the total pulsatile production were lower in the saline group vs. the insulin and somatostatin groups (P < 0.05), indicating enhancement of glucagon pulsatile activity by insulin and somatostatin compared with saline. Network modeling analysis demonstrates that reciprocal interactions between alpha- and delta-cells can explain the amplification by interpreting the GCR as a rebound response to the switch-off. The model justifies experimental designs to further study the intrapancreatic network in relation to the switch-off phenomenon. The results of this proof-of-concept interdisciplinary study support the hypothesis that GCR develops as a rebound pulsatile response of the intrapancreatic endocrine feedback network to switch-off of alpha-cell-inhibiting islet signals.
Abstractp21‐activated kinase 1 (Pak1), a serine/threonine kinase, has been implicated in cytoskeletal remodelling, cell motility, apoptosis and transformation. However, the role of Pak1 in gastric cancer remains unclear. In this study, we detected Pak1 expression in gastric cancer tissues from 40 patients by western blot. Overexpression of Pak1 was associated with progression, metastasis and prognosis of gastric cancer. In addition, we found that knockdown of Pak1 expression significantly inhibited anchorage‐dependent and anchorage‐independent growth in gastric cancer cells, and markedly inhibited gastric cancer cell xenograft tumor growth. In further study, data showed that Pak1 could regulate the expression of cyclin B1 at the mRNA and protein levels, and impact the subcellular distribution and the promoter activity of cyclin B1. Results from deletion and mutant analysis supplied a new NF‐κB binding sites at position ‐321 of cyclin B1 promoter, and indicated that Pak1 regulated the transcription of cyclin B1 in gastric cancer through NF‐κB. In conclusion, Pak1 may be a potential prognostic marker and therapeutic target in gastric cancer. © 2009 UICC
Multiple organ dysfunction syndrome (MODS) is a detrimental clinical complication in critically ill patients with high mortality. Emerging evidence suggests that oxidative stress and endothelial activation (induced expression of adhesion molecules) of vital organ vasculatures are key, early steps in the pathogenesis. We aimed to ascertain the role and mechanism(s) of enhanced extracellular superoxide dismutase (EcSOD) expression in skeletal muscle in protection against MODS induced by endotoxemia. We showed that EcSOD overexpressed in skeletal muscle-specific transgenic mice (TG) redistributes to other peripheral organs through the circulation and enriches at the endothelium of the vasculatures. TG mice are resistant to endotoxemia (induced by lipopolysaccharide [LPS] injection) in developing MODS with significantly reduced mortality and organ damages compared with the wild type littermates (WT). Heterogenic parabiosis between TG and WT mice conferred a significant protection to WT mice, whereas mice with R213G knock-in mutation, a human single nucleotide polymorphism leading to reduced binding EcSOD in peripheral organs, exacerbated the organ damages. Mechanistically, EcSOD inhibits vascular cell adhesion molecule 1 expression and inflammatory leukocyte adhesion to the vascular wall of vital organs, blocking an early step of the pathology in organ damage under endotoxemia. Therefore, enhanced expression of EcSOD in skeletal muscle profoundly protects against MODS by inhibiting endothelial activation and inflammatory cell adhesion, which could be a promising therapy for MODS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.