Stem cells ensure tissue regeneration, while overgrowth of adipogenic cells may compromise organ recovery and impair function. In myopathies and muscle atrophy associated with aging, fat accumulation increases dysfunction, and after chronic injury, the process of fatty degeneration, in which muscle is replaced by white adipocytes, further compromises tissue function and environment. Some studies suggest that pericytes may contribute to muscle regeneration as well as fat formation. This work reports the presence of two pericyte subpopulations in the skeletal muscle and characterizes their specific roles. Skeletal muscle from Nestin-GFP/ NG2-DsRed mice show two types of pericytes, Nestin-GFP-/NG2-DsRed + (type-1) and Nestin-GFP + /NG2-DsRed + (type-2), in close proximity to endothelial cells. We also found that both Nestin-GFP-/NG2-DsRed + and Nestin-GFP + /NG2-DsRed + cells colocalize with staining of two pericyte markers, PDGFRb and CD146, but only type-1 pericyte express the adipogenic progenitor marker PDGFRa. Type-2 pericytes participate in muscle regeneration, while type-1 contribute to fat accumulation. Transplantation studies indicate that type-1 pericytes do not form muscle in vivo, but contribute to fat deposition in the skeletal muscle, while type-2 pericytes contribute only to the new muscle formation after injury, but not to the fat accumulation. Our results suggest that type-1 and type-2 pericytes contribute to successful muscle regeneration which results from a balance of myogenic and nonmyogenic cells activation.
Styrene radical polymerization was carried out in the presence of a polymerizable dithioester, benzyl 4-vinyldithiobenzoate, which possesses a dithioester group and a polymerizable double bond. Branched polystyrene was formed during the polymerization, as indicated by multimodal GPC curves of the products. The branched polystyrene contains a dithiobenzoate C(dS)S moiety at each branch point and thus can be analyzed by cleavage with amine. After cleavage, the GPC profiles became narrow. The molecular weight of the cleaved product increased linearly with monomer conversion, illustrating a living fashion of the polymerization. Solution property obtained by simultaneous online measurements of viscosity and light scattering indicates that the viscosity of the branched product decreased remarkably as compared to the linear polystyrene of equivalent molecular weight. The copolymerization behavior of styrene and benzyl 4-vinyldithiobenzoate was investigated by FT-IR monitoring during the polymerization. The results show that the latter was incorporated homogeneously into polystyrene chain. Therefore, branched polystyrene was synthesized with controlled architecture in the light of the length and narrow distribution of primary chains as well as the degree and the distribution of branching along the polymer chain.
Tissue growth and function depend on vascularization, and vascular insufficiency or excess exacerbates many human diseases. Identification of the biological processes involved in angiogenesis will dictate strategies to modulate reduced or excessive vessel formation. We examine the essential role of pericytes. Their heterogeneous morphology, distribution, origins, and physiology have been described. Using double-transgenic Nestin-GFP/NG2-DsRed mice, we identified two pericyte subsets. We found that Nestin-GFP(-)/NG2-DsRed(+) (type-1) and Nestin-GFP(+)/NG2-DsRed(+) (type-2) pericytes attach to the walls of small and large blood vessels in vivo; in vitro, type-2, but not type-1, pericytes spark endothelial cells to form new vessels. Matrigel assay showed that only type-2 pericytes participate in normal angiogenesis. Moreover, when cancer cells were transplanted into Nestin-GFP/NG2-DsRed mice, type-1 pericytes did not penetrate the tumor, while type-2 pericytes were recruited during its angiogenesis. As inhibition of angiogenesis is a promising strategy in cancer therapy, type-2 pericytes may provide a cellular target susceptible to signaling and pharmacological manipulation in treating malignancy. This work also reports the potential of type-2 pericytes to improve blood perfusion in ischemic hindlimbs, indicating their potential for treating ischemic illnesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.