In this paper, we propose a symmetric alternating method of multipliers for minimizing the sum of two nonconvex functions with linear constraints, which contains the classic alternating direction method of multipliers in the algorithm framework. Based on the powerful Kurdyka–Łojasiewicz property, and under some assumptions about the penalty parameter and objective function, we prove that each bounded sequence generated by the proposed method globally converges to a critical point of the augmented Lagrangian function associated with the given problem. Moreover, we report some preliminary numerical results on solving [Formula: see text] regularized sparsity optimization and nonconvex feasibility problems to indicate the feasibility and effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.