Many fundamental questions on aging are still unanswered or are under intense debate. These questions are frequently not addressable by examining a single gene or a single pathway, but can best be addressed at the systems level. Here we examined the modular structure of the proteinprotein interaction (PPI) networks during fruitfly and human brain aging. In both networks, there are two modules associated with the cellular proliferation to differentiation temporal switch that display opposite aging-related changes in expression. During fly aging, another couple of modules are associated with the oxidative-reductive metabolic temporal switch. These network modules and their relationships demonstrate (1) that aging is largely associated with a small number, instead of many network modules, (2) that some modular changes might be reversible and (3) that genes connecting different modules through PPIs are more likely to affect aging/longevity, a conclusion that is experimentally validated by Caenorhabditis elegans lifespan analysis. Network simulations further suggest that aging might preferentially attack key regulatory nodes that are important for the network stability, implicating a potential molecular basis for the stochastic nature of aging.
BackgroundThe ability to predict the interaction of drugs with target proteins is essential to research and development of drug. However, the traditional experimental paradigm is costly, and previous in silico prediction paradigms have been impeded by the wide range of data platforms and data scarcity.ResultsIn this paper, we modeled the prediction of drug-target interactions as a binary classification task. Using transcriptome data from the L1000 database of the LINCS project, we developed a framework based on a deep-learning algorithm to predict potential drug target interactions. Once fully trained, the model achieved over 98% training accuracy. The results of our research demonstrated that our framework could discover more reliable DTIs than found by other methods. This conclusion was validated further across platforms with a high percentage of overlapping interactions.ConclusionsOur model’s capacity of integrating transcriptome data from drugs and genes strongly suggests the strength of its potential for DTI prediction, thereby improving the drug discovery process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.