Cytochrome p450 (CYP450) enzymes are predominantly involved in Phase I metabolism of xenobiotics. In this study, the CYP450 isoforms involved in xanthotoxol metabolism were identified using recombinant CYP450s. In addition, the inhibitory effects of xanthotoxol on eight CYP450 isoforms and its pharmacokinetic parameters were determined using human liver microsomes. CYP1A2, one of CYP450s, played a key role in the metabolism of xanthotoxol compared to other CYP450s. Xanthotoxol showed stronger inhibition on CYP3A4 and CYP1A2 compared to other isoenzymes with the IC50 of 7.43 μM for CYP3A4 and 27.82 μM for CYP1A2. The values of inhibition kinetic parameters (Ki) were 21.15 μM and 2.22 μM for CYP1A2 and CYP3A4, respectively. The metabolism of xanthotoxol obeyed the typical monophasic Michaelis-Menten kinetics and V max, K m, and CLint values were calculated as 0.55 nmol·min−1·mg−1, 8.46 μM, and 0.06 mL·min−1·mg−1. In addition, the results of molecular docking showed that xanthotoxol was bound to CYP1A2 with hydrophobic and π-π bond and CYP3A4 with hydrogen and hydrophobic bond. We predicted the hepatic clearance (CLH) and the CLH value was 15.91 mL·min−1·kg−1 body weight. These data were significant for the application of xanthotoxol and xanthotoxol-containing herbs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.