T cells play important roles in anti-tumor immunity. Emerging evidence has revealed that distinct metabolic changes impact the activation and differentiation of T cells. Tailoring immune responses by manipulating cellular metabolic pathways and the identification of new targets may provide new options for cancer immunotherapy. In this review, we focus on recent advances in the metabolic reprogramming of different subtypes of T cells and T cell functions. We summarize how metabolic pathways accurately regulate T cell development, differentiation, and function in the tumor microenvironment. Because of the similar metabolism in activated T cells and tumor cells, we also describe the effect of the tumor microenvironment on T cell metabolism reprogramming, which may provide strategies for maximal anti-cancer effects and enhancing the immunity of T cells. Thus, studies of T lymphocyte metabolism can not only facilitate the basic research of immune metabolism, but also provide potential targets for drug development and new strategies for clinical treatment of cancer.
Background: The tolerogenic homeostasis in Breast Cancer (BC) can be surpassed by rationally designed immune-encouraging constructs against tumor-specific antigens through immunoinformatics approach. Objective: Availability of high throughput data providing the underlying concept of diseases and awarded computational simulations, lead to screening the potential medications and strategies in less time and cost. Despite the extensive effects of Placenta Specific 1 (PLAC1) in BC progression, immune tolerance, invasion, cell cycle regulation, and being a tumor-specific antigen the fundamental mechanisms and regulatory factors were not fully explored. It is also worth to design an immune response inducing construct to surpass the hurdles of traditional anti-cancer treatments. Methods and Result: The study was initiated by predicting and modelling the PLAC1 secondary and tertiary structures and then engineering the fusion pattern of PLAC1 derived immunodominant predicted CD8+ and B-cell epitopes to form a multi-epitope immunogenic construct. The construct was analyzed considering the physiochemical characterization, safety, antigenicity, post-translational modification, solubility, and intrinsically disordered regions. After modelling its tertiary structure, proteinprotein docking simulation was carried out to ensure the attachment of construct with Toll-Like Receptor 4 (TLR4) as an immune receptor. To guarantee the highest expression of the designed construct in E. coli k12 as an expressional host, the codon optimization and in-silico cloning were performed. The PLAC1 related miRNAs in BC were excavated and validated through TCGA BC miRNA-sequencing and databases; the common pathways then were introduced as other probable mechanisms of PLAC1 activity. Conclusion: Regarding the obtained in-silico results, the designed anti-PLAC1 multi-epitope construct can probably trigger humoral and cellular immune responses and inflammatory cascades, therefore may have the potential of halting BC progression and invasion engaging predicted pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.